德國機器人和人工智慧研究

  人工智慧及機器人分為以下4種類型:首先是工廠裡的作業機器人,可自主性重複執行相同任務,例如拾取、放置、運輸物品,它們在侷限的環境中執行具體事務,而且通常是在周圍無人的圍籬區內作業,然而目前趨勢已有越來越多機器人可安全執行人機協作的任務。第二種係用在傳統製造外的專業機器人,例如:擠奶機器人、醫院手術機器人。第三種是生活中常見的消費產品機器人,常用於私人目的,例如:吸塵器機器人、割草機器人。最後是人工智慧軟體,此軟體可應用於醫療診斷輔助系統、語音助理系統中,目前越來越多人工智慧軟體結合復雜的感測器和聯網裝置,可執行較複雜之任務,例如:自動駕駛車。

  德國人工智慧研究中心(Deutsche Forschungszentrum für Künstliche Intelligenz,DFKI)為非營利性公私合作夥伴(PPP)之研究機構,與歐盟,聯邦教育及研究部(BMBF)、德國聯邦經濟及能源部(BMWi),各邦和德國研究基金會(DFG)等共同致力於人工智慧之研究發展,轄下之機器人創新中心(Robotics Innovation Center,RIC)亦投入水下、太空、搜救、物流、製造業等各領域機器人之研究,未來將著重於研究成果的實際運用,以提升各領域之生產力。2016年6月,各界專家於德國聯邦議院的數位議程委員會中,呼籲立法者應注意機器人技術對經濟,勞動和社會的影響,包括技術及產品的安全標準、機器人應用之法律歸責問題、智慧財產權的歸屬與侵權問題,隱私權問題、及是否對機器人課稅等,進行相關修法監管準備。

  解決台灣人口結構老化、勞動力短缺與產業競爭力等問題已是當務之急,政府為促進台灣產業轉型,欲透過智慧機械創新與物聯網技術,促使產業朝智慧化生產目標邁進。未來除需持續精進技術研發與導入產業業升級轉型外,應將人工智慧納入政策方針,並持續完備法制環境建構及提升軟實力,以確保我國技術發展得以跟上世界潮流。

※ 德國機器人和人工智慧研究, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?no=57&tp=5&i=2&d=7749 (最後瀏覽日:2019/10/18)
引註此篇文章
你可能還會想看
國際海事組織公布自駕船規則制定期程表

  國際海事組織(International Maritime Organization, IMO)於2018年6月5日第99次海上安全委員會(MSC 99)上,根據日本等國提案,開始進行監理範圍之界定與檢討等相關工作(Regulatory Scoping Exercise, RSE)。於MSC 99之會議上,IMO已暫定自駕船之定義與自動化等級,並於2018年12月3日至12月7日於英國倫敦召開之MSC 100會議上進一步確定RSE框架,公布自駕船規則之制定期程表,具體措施將分為兩階段實行。第一階段預計在2019年9月前釐清可能妨礙自駕船航行,或者有修正和確認必要之IMO規定。第二階段則規劃在2020年5月召開之MSC 102前,檢討為實現自駕船所需修正及制定之IMO規則。此外,MSC 100亦批准2018年5月IMO人為因素、訓練和值班小組委員會(Sub-Committee on Human element, Training and Watchkeeping, HTW)提出之船員「疲勞指引」(Guidelines on Fatigue)修正案,並預計在2019年6月召開之MSC101上,進一步針對燃料油品質所引發之安全問題進行討論。

數位模擬分身(Digital Twin)

  數位模擬分身(Digital Twin)係指將實體設備或系統資訊轉為數位資訊,使資訊科學或IT專家可藉此在建立或配置實際設備前進行模擬,從而深入了解目標效能或潛在問題。   於實際運用上,數位模擬分身除可用於實體設備製造前,先行針對產品進行測試,以減少產品缺陷並縮短產品上市時間外,亦可用於產品維護,例如在以某種方式修復物品前,先利用數位模擬分身測試修復效果。此外,數位模擬分身還可用於自駕車及協助落實《一般資料保護規範》(General Data Protection Regulation, 以下簡稱GDPR)規定。在自駕車方面,數位模擬分身可通過雲端運算(cloud computing)和邊緣運算(edge computing)連接,由數位模擬分身分析於雲端運算中涉及自駕系統操作之資訊,包括全部駕駛週期內之資料,如車輛模型在內之製造資料(manufacturing data)、駕駛習慣及偏好等個人隱私資料、感測器所蒐集之環境資料等,協助自駕系統做出決策;在GDPR方面,數位模擬分身可利用以下5大步驟,建立GDPR法規遵循機制以強化隱私保護:1.識別利害關係人與資產,包括外部服務和知識庫;2.漏洞檢測;3.透過虛擬數值替代隱私資料進行個資去識別化;4.解釋結果資料;5.利用資料匿名化以最大限度降低隱私風險,並防止受試者之隱私洩露。

加拿大交通部提出加拿大自駕系統安全評估文件

  加拿大交通部(Department of Transport Canada)於2019年1月發布「加拿大自駕系統安全評估(Safety Assessment for Automated Driving Systems in Canada)」文件,該文件將協助加拿大企業評估其發展高級(SAE第三級至第五級)自駕層級車輛之安全性,並可與美國相關政策進行整合。該文件指出,因相關技術尚在發展之中,不適合使用強制性規範進行管制,因此將利用引導性之政策措施來協助相關駕駛系統安全發展。加拿大交通部於文件中指出可用於評估目前自駕車輛研發成果之13種面向,並將其分類為三個領域: 自駕技術能力、設計與驗證:包含檢視車輛設計應屬何種自駕層級與使用目的、操作設計適用範圍、物件及事件偵測與反應、國際標準、測試與驗證等。 以使用者為核心之安全性:包含安全系統、人車界面與控制權的可取得性、駕駛/使用人能力與意識教育、撞擊或系統失靈時的運作等。 網路安全與資料管理:包含管理網路安全風險策略、售後車輛安全功能運作與更新、隱私與個資保障、車輛與政府分享之資訊等。   加拿大交通部鼓勵企業利用該文件提出安全評估報告並向公眾公開以增進消費者意識,另一方面,該安全評估報告內容也可協助加拿大政府發展相關安全政策與規範。

英國上議院人工智慧專責委員會提出AI應用影響報告並提出未來政策建議

  英國上議院人工智慧專責委員會(Select Committee on Artificial Intelligence)2018年4月18日公開「AI在英國:準備、意願與可能性?(AI in the UK: ready, willing and able?)」報告,針對AI可能產生的影響與議題提出政策建議。   委員會建議為避免AI的系統與應用上出現偏頗,應注重大量資訊蒐集之方式;無論是企業或學術界,皆應於人民隱私獲得保障之情況下方有合理近用數據資訊的權利。因此為建立保護框架與相關機制,其呼籲政府應主動檢視潛在英國中大型科技公司壟斷數據之可能性;為使AI的發展具有可理解性和避免產生偏見,政府應提供誘因發展審查AI領域中資訊應用之方法,並鼓勵增加AI人才訓練與招募的多元性。   再者,為促進AI應用之意識與了解,委員會建議產業應建立機制,知會消費者其應用AI做出敏感決策的時機。為因應AI對就業市場之衝擊,建議利用如國家再訓練方案發展再訓練之計畫,並於早期教育中即加入AI教育;並促進公部門AI之發展與布建,特別於健康照顧應用層面。另外,針對AI失靈可能性,應釐清目前法律領域是否足以因應其失靈所造成之損害,並應提供資金進行更進一步之研究,特別於網路安全風險之面向。   本報告並期待建立AI共通之倫理原則,為未來AI相關管制奠定初步基礎與框架。

TOP