加州新修正法規要求公司董事會必須包括女性

  加利福尼亞州(下簡稱加州)州長Jerry Brown於2018年9月30日簽署了一項新法案,規定在加州註冊成立的上市公司以及總部位於加州並在美國證交所上市的外國公司(如德拉瓦州公司),都必須在2019年底之前,於其董事會安排至少一位女性擔任董事,否則將面臨處罰;而此項新規定,亦使加州成為美國第一個要求上市公司將女性納入董事會的州。

  此項規定並規定,在2021年年底前,若董事會的規模為6名以上,至少需有3名女性董事,若董事會的規模為5名成員,則至少需有2名女性董事,若董事會規模為4名以下董事,則至少需有1名女性董事。違反此項規定,將受到以下處罰:(1)首次違反處以10萬美元的罰款;(2)再度違反處以30萬美元的罰款,隨後再處以每次違反的罰款。

  根據統計,日前在美國3000家最大的上市公司的董事會組成中,女性僅占其中18%,於2017年,更有624家上市公司的董事會中根本沒有女性。該法案表明,促進公司董事會性別平等不僅可以改善所有女性的職場機會,同時還能提高生產力,其依據是瑞士信貸(Credit Suisse)於2014年所作出的一項研究,該研究發現,擁有全男性董事會的公司,其平均股本回報率(Return on Equity, ROE)為10.1%,而擁有至少一名女性董事的公司,其平均股本回報率為12.2%。

  根據彭博社(Bloomberg)於2019年的一項新分析,此項變革可為女性提供692個席次,並足以導致美國公司董事會整體性別平衡產生顯著的變化。此外,新紐澤西州(New Jersey)和馬薩諸塞州(Massachusetts)亦在考慮進行類似的立法,其他州也通過了不具拘束力的準則。根據統計,若其他州採用和加州相同立法,羅素3000(Russell 3000)中的公司需要在幾年內為女性開放3732個董事會席次,全國董事會的女性人數將增加近75%。

  縱使該法案的反對者認為,這將增加企業改善種族和民族多樣性的難度,並質疑法案的適法性,然該法案的提出者仍認為,此一措施對於提升女性的代表權是必要的,相信當董事會組成多元化,女性的聲音能被聽到時,對整體勞動力的改善會是更好的。

相關連結
※ 加州新修正法規要求公司董事會必須包括女性, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?no=64&tp=1&i=72&d=8227 (最後瀏覽日:2019/08/17)
引註此篇文章
你可能還會想看
歐洲法院2017年12月認定Uber是運輸服務業

  巴塞隆納計程車工會認為Uber未受西班牙運輸服務業相關法令管制,而有違反公平競爭之虞,因此向西班牙巴塞隆納3號商事法院提起訴訟。3號商事法院認為有必要進一步釐清Uber之商業模式究竟是否為歐盟法令下之運輸服務業或資訊服務業,亦或兩者均是。這將影響歐盟內部市場指令和電子商務指令之涵蓋範圍,從而決定Uber是否有違反競爭法。   為此,歐洲法院在2017年5月做出先行裁決後,於同年12月做出判決,認定Uber之性質是運輸服務業,因此排除前述指令之適用,應接受各國運輸服務業相關法令之要求,否則違反公平競爭。法院觀點認為縱然其商業模式看似乘客與駕駛之間為自由選擇之連結。然而,Uber提供的平台是這個連結不可或缺的關鍵以外,對於運輸服務的提供,包括價格、車輛、駕駛的選擇具有決定性的影響力。此外,Uber藉由組織這樣的運輸服務來獲取利潤本身就涉及了運輸服務的直接提供。所以Uber整體服務的主要組成部分必須被視為以運輸服務構成,不應被分類為資訊服務。

英國Tesco於網域名稱爭議中獲得勝利

  英國一家連鎖超市Tesco(中文譯名:特易購)於2006年3月8號「英國與威爾斯高等法院」的網域名稱爭議判決中獲得勝訴,該爭議起於Tesco之廣告連結商-Elogicom 公司,向替Tesco建置廣告連結註冊服務之TradeDoubler公司登記了「tesco-diets.co.uk」與「tescodvd.co.uk」兩個網域名稱;系爭域名非指向Elogicom公司所屬網頁,而僅直接指向Tesco網站,企圖以增加使用者連結至Tesco網站之數量賺取高額之廣告連結佣金。   Tesco對Elogicom公司主張商標權之侵害及搭便車,並請求移轉網域名稱;Elogicom則提起反訴請求給付佣金。該案法官認為Elogicom是利用「tesco」之名稱採取「釣魚」(fishing) 的方式,誘引不喜歡利用搜尋引擎而習慣於網路位址列鍵入猜測域名之網路使用者連結至其所設立之錯誤網站,藉由網站之自動連結功能跳頁至Tesco網站而賺取連結佣金,即使該公司並未使用該網站連結至與Tesco有營業競爭關係之網站,但仍因此利用Tesco之名賺取不正當利益並造成Tesco之商譽受到損害,判決Tesco勝訴並駁回Elogicom公司之反訴。

歐盟網路暨資訊安全局發布「重要基礎設施資訊安全培訓需求盤點報告」加強重要部門資訊安全作業

  歐盟網路暨資訊安全局於2017年12月7日發布「重要基礎設施資訊安全培訓需求盤點報告」(Stocktaking of information security training needs in critical sectors)之文件,點出各重要基礎設施之「電腦安全事件反應小組」(Computer Security Incident Response Teams, CISRT)所必須接受之資安訓練種類。   歐盟之網路與資訊系統安全指令(The Directive on security of network and information systems, NIS Directive)規範各成員國之重要服務營運者(operator of essential service)必須確認出哪些服務於維繫社會與經濟活動上具備重要性。被認定具備重要性之部門如下:能源、運輸、銀行業、金融市場基礎設施、健康照護部門、飲用水供應與分配、數位基礎設施。   此份報告指出,該重要性部門之資安等級需求並不盡相同,因此導致各部門面對資安事件之準備無法相提並論。例如,能源產業會用到SCADA系統,而金融市場基礎設施則普遍沒有相關需求。而由於NIS指令將上述七種部門列為資訊安全維護最高層級,故此份報告目的係確認該部門當前的處境,並與現階段可取得之網路安全訓練對照,進一步具體檢視各重要部門是否有其他額外的網路安全訓練需求。   我國行政院於民國106年4月公布之資通安全管理法草案要求關鍵基礎設施提供者應訂定、修正、實施資通安全維護計畫,並向中央目的事業主管機關或直轄市、縣(市)政府提出該計畫之實施情形,在未來實際落實各重要性設施之資安維護以及資安小組訓練時,須意識到各重要性設施之資訊安全需求差異性,及相關人員必須針對不同單位而受不同之訓練。

德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

TOP