Draft of AI Product and System Evaluation Guidelines Released by the Administration for Digital Industries to Enhance AI Governance

Draft of AI Product and System Evaluation Guidelines Released by the Administration for Digital Industries to Enhance AI Governance

2024/08/15

I. AI Taiwan Action Plan 2.0

In 2018, the Executive Yuan launched the “AI Taiwan Action Plan” to ensure that the country keeps pace with AI developments. This strategic initiative focuses on attracting top talent, advancing research and development, and integrating AI into critical sectors such as smart manufacturing and healthcare. The action plan has sparked growing discussion on AI regulation. Through these efforts, Taiwan aims to position itself as a frontrunner in the global smart technology landscape. Later in 2023, the Executive Yuan updated the action plan, releasing “AI Taiwan Action Plan 2.0” to further strengthen AI development.

“AI Taiwan Action Plan 2.0” outlines five main pillars:

1. Talent Development: Enhancing the quality and quantity of AI expertise, while improving public AI literacy through targeted education and training initiatives.

2. Technological and Industrial Advancement: Focusing on critical AI technologies and applications to foster industrial growth; and creating the Trustworthy AI Dialogue Engine (TAIDE) that communicates in Traditional Chinese.

3. Enhancing work environments: Establishing robust AI governance infrastructure to facilitate industry and governmental regulation, and to foster compliance with international standards.

4. International Collaboration: Expanding Taiwan's role in international AI forums, such as the Global Partnership on AI, to collaborate on developing trustworthy AI practices.

5. Societal and Humanitarian Engagement: Utilizing AI to tackle pressing societal challenges such as labor shortages, an aging population, and environmental sustainability.

II. AI Product and System Evaluation Guidelines: A Risk-based Approach to AI Governance

To support infrastructure, in March 2024, the Administration for Digital Industries issued the draft AI Product and System Evaluation Guidelines. The Guidelines are intended to serve as a reference for industry when developing and using AI products and systems, thus laying a crucial foundation for advancing AI-related policies in Taiwan. The Guidelines outline several potential risks associated with AI:

1. Third-Party Software and Hardware: While third-party software, hardware, and datasets can accelerate development, they may also introduce risks into AI products and systems. Therefore, effective risk management policies are crucial.

2. System Transparency: The lack of transparency in AI products and systems makes risk assessment relatively challenging. Inadequate transparency in AI models and datasets also pose risks for development and deployment.

3. Differences in Risk Perception: Developers of AI products and systems may overlook risks specific to different application scenarios. Moreover, risks may gradually emerge as the product or system is used and trained over time.

4. Application Domain Risks: Variations between testing results and actual operational performance can lead to differing risk assessments for evaluated products and systems.

5. Deviation from Human Behavioral Norms: If AI products and systems behave unexpectedly compared to human operations, this can indicate a drift in the product, system, or model, thereby introducing risks.

The Guidelines also specify that businesses have to categorize risks when developing or using AI products and systems, and manage them in accordance with these classifications. In alignment with the EU AI Act, risks are classified into four levels: unacceptable, high, limited, and minimal.

1. Unacceptable Risk: If AI systems used by public or private entities provide social scoring of individuals, this could lead to discriminatory outcomes and the exclusion of certain groups. Furthermore, if AI systems are employed to manipulate the cognitive behavior of individuals or vulnerable populations, causing physical or psychological harm, such systems are deemed unacceptable and prohibited.

2. High risk: AI systems are classified as high-risk in several situations. These include applications used in critical infrastructure, such as transportation, where there is potential risk to citizens' safety and health. These situations also encompass AI systems involved in educational or vocational training (such as exam scoring), which can determine access to education or professional paths. AI used as safety-critical product components, such as robot-assisted surgery, also falls into this category. In the employment sector, AI systems used for managing recruitment processes, including CV-sorting software, are considered high-risk. Essential private and public services, such as credit scoring systems that impact loan eligibility, also fall under high-risk. AI used in law enforcement in ways that it may affect fundamental rights, such as evaluating the reliability of evidence, is also included. AI systems involved in migration, asylum, and border control, such as automated visa application examinations, are categorized as high-risk. Finally, AI solutions used in the administration of justice and democratic processes, such as court ruling searches, are also classified as high-risk.
If an AI system is classified as high risk, it must be evaluated across ten criteria—Safety, Explainability, Resilience, Fairness, Accuracy, Transparency, Accountability, Reliability, Privacy, and Security—to ensure the AI system’s quality.

3. Limited risk: When an AI product or system is classified as having limited risk, it is up to the enterprise to determine whether an evaluation is required. The Guidelines also introduce specific transparency obligations to ensure that humans are informed when necessary, thus fostering trust. For instance, when using AI systems such as chatbots or systems for generating deepfake content, humans must be made aware that they are interacting with a machine so they can take an informed decision to continue or step back.

4. Minimal or no risk: The Guidelines allow the free use of minimal-risk AI. This includes applications such as AI-enabled video games and spam filters.

Ⅲ. Conclusion

The AI Product and System Evaluation Guidelines represent a significant step forward in establishing a robust, risk-based framework for AI governance in Taiwan. By aligning with international standards like the EU AI Act, these Guidelines ensure that AI products and systems are rigorously assessed and categorized into four distinct risk levels: unacceptable, high, limited, and minimal. This structured approach allows businesses to manage AI-related risks more effectively, ensuring that systems are safe, transparent, and accountable.

The emphasis on evaluating AI systems across ten critical criteria—including safety, explainability, and fairness—reflects a comprehensive strategy to mitigate potential risks. This proactive approach not only safeguards the public but also fosters trust in AI technologies. By setting clear expectations and responsibilities for businesses, the Guidelines promote responsible development and deployment of AI, ultimately contributing to Taiwan's goal of becoming a leader in the global AI landscape.

※Draft of AI Product and System Evaluation Guidelines Released by the Administration for Digital Industries to Enhance AI Governance,STLI, https://stli.iii.org.tw/en/article-detail.aspx?no=105&tp=2&i=168&d=9257 (Date:2025/11/10)
Quote this paper
You may be interested
Taiwan's Approach to AI Governance

Taiwan's Approach to AI Governance 2024/06/19 In an era where artificial intelligence (AI) reshapes every facet of life, governance plays a pivotal role in harnessing its benefits while mitigating associated risks. Taiwan, recognizing the dual-edged nature of AI, has embarked on a comprehensive strategy to ensure its development is both ethical and effective. This article delves into Taiwan's AI governance framework, exploring its strategic pillars, regulatory milestones, and future directions. I. Taiwan's AI Governance Vision: Taiwan AI Action Plan 2.0 Taiwan has long viewed AI as a transformative force that must be guided with a careful balance of innovation and regulation. With the advent of technologies capable of influencing democracy, privacy, and social stability, Taiwan's approach is rooted in human-centric values. The nation's strategy is aligned with global movements towards responsible AI, drawing lessons from international standards like those set by the European Union's Artificial Intelligence Act. The "Taiwan AI Action Plan 2.0" is the cornerstone of this strategy. It is a multi-faceted plan designed to boost Taiwan's AI capabilities through five key components: 1. Talent Development: Enhancing the quality and quantity of AI professionals while improving public AI literacy through targeted education and training initiatives. 2. Technological and Industrial Advancement: Focusing on critical AI technologies and applications to foster industrial growth and creating the Trustworthy AI Dialogue Engine (TAIDE) that communicates in Traditional Chinese. 3. Supportive Infrastructure: Establishing robust AI governance infrastructure to facilitate industry and governmental regulation, and to foster compliance with international standards. 4. International Collaboration: Expanding Taiwan's role in international AI forums, such as the Global Partnership on AI (GPAI), to collaborate on developing trustworthy AI practices. 5. Societal and Humanitarian Engagement: Utilizing AI to tackle pressing societal challenges like labor shortages, an aging population, and environmental sustainability. II. Guidance-before-legislation To facilitate a gradual adaptation to the evolving legal landscape of artificial intelligence and maintain flexibility in governance, Taiwan employs a "guidance-before-legislation" approach. This strategy prioritizes the rollout of non-binding guidelines as an initial step, allowing agencies to adjust before any formal legislation is enacted as needed. Taiwan adopts a proactive approach in AI governance, facilitated by the Executive Yuan. This method involves consistent inter-departmental collaborations to create a unified regulatory landscape. Each ministry is actively formulating and refining guidelines to address the specific challenges and opportunities presented by AI within their areas of responsibility, spanning finance, healthcare, transportation, and cultural sectors. III. Next step: Artificial Intelligence Basic Act The drafting of the "Basic Law on Artificial Intelligence," anticipated for legislative review in 2024, marks a significant step towards codifying Taiwan’s AI governance. Built on seven foundational principles—transparency, privacy, autonomy, fairness, cybersecurity, sustainable development, and accountability—this law will serve as the backbone for all AI-related activities and developments in Taiwan. By establishing rigorous standards and evaluation mechanisms, this law will not only govern but also guide the ethical deployment of AI technologies, ensuring that they are beneficial and safe for all. IV. Conclusion As AI continues to evolve, the need for robust governance frameworks becomes increasingly critical. Taiwan is setting a global standard for AI governance that is both ethical and effective. Through legislation, active international cooperation, and a steadfast commitment to human-centric values, Taiwan is shaping a future where AI technology not only thrives but also aligns seamlessly with societal norms and values.

Innovative Practice of Israel's Government Procurement

Innovative Practice of Israel's Government Procurement   Government procurement is an important pillar of government services. Because of the huge number of government purchases, government procurement management play an important role in promoting public sector efficiency and building citizenship. Well-designed government procurement systems also help to achieve policy such as environmental protection, innovation, start-ups and the development of small and medium-sized enterprises.   Nowadays, countries in the world, especially OECD countries, have been widely practiced with innovative procurement to stimulate innovation and start-ups, and call Innovation procurement can deliver solutions to challenges of public interest and ICTs can play a major role in this. However, in the OECD countries, in addition to the advanced countries that have been developed, many developing countries have also used government procurement to stimulate national R & D and innovation with remarkable results. Israel is one of the world's leading technology innovation centers, one of the most innovative economies in the world, continues to leverage its own strengths, support of technology entrepreneurship and unique environment, an international reputation in the high-tech industry, the spirit of technological innovation and novelty.   Government procurement is a core element of the activities of Israeli government, agreement with suppliers and compliance with the Mandatory Tenders Law. The main challenge is how to ensure efficiency and maintain government performance while ensuring an equitable and transparent procurement process. Israel’s Mandatory Tenders Law has shown the central role played by the Israeli Supreme Court in creating and developing this law, even in the absence of any procurement legislation, based instead on general principles of administrative law. Once the project of creating a detailed body of public tendering law had been completed, and the legislator was about to step in, the Supreme Court was prepared to step out and transferring the jurisdiction to lower courts. The Knesset passed the Mandatory Tenders Law, and based on it the Government issued the various tendering regulations. Besides, Israel's various international agreements on government procurement, mainly GPA and other bilateral international agreements such as free trade agreements with Mexico and Colombia and free trade agreements and memoranda of understanding with the United States. The practical significance of these commitments can only be understood on the backdrop of Israel’s domestic preference and offset policies. These policies were therefore discussed and analyzed as they apply when none of the international agreements applies.   The Challenge Tenders "How to solve the problem of overcrowding in the emergency department and the internal medicine department?" is the first of a series of "problem solicitations" released by the Israeli Ministry of Health which seeks to find a digital solution to the public health system problem, questions from the government while avoiding preconceived prejudices affect the nature of the solution, allowing multiple innovative ideas from different fields to enter the health system, make fair and transparent judgments about the ideal solution to the problem. In order to ensure transparency and integrity, equality, efficiency and competition in the decision-making process, the tender proposed by the Israeli Ministry of Health defines a two-stage tender process. The Ministry of Health of Israel, in order to improve the quality of medical care, shorten the waiting time for hospitalized patients, protect the dignity of patients and their families with patients as its center, and ensure their rights, while alleviating the burden of hospital staff, so as to pass the targeted treatment areas reduce the gap between various residential areas. The Israeli government deals with these issues through challenging tenders and offers a digital solution combined with innovative ideas. The initiative proposed through the development of public service projects can raise the level of public services in the country and help the government to reduce costs and achieve the purpose of promoting innovation with limited conceptual, technical and financial capabilities. In addition, due to the online operation of the challenging tender process throughout the entire process, fair and transparent procedures can be ensured, while public-private partnerships are encouraged to facilitate the implementation of the implementation plan.

Experiences about opening data in private sector

Experiences about opening data in private sector Ⅰ. Introduction   Open data is the idea that data should be available freely for everyone to use and republish without restrictions from copyright, patents or other mechanisms of control. The concept of open data is not new; but a formalized definition is relatively new, and The Open Definition gives full details on the requirements for open data and content as follows:   Availability and access: the data must be available as a whole with no more than a reasonable reproduction cost, preferably by downloading over the internet. The data must also be available in a convenient and modifiable form.   Reuse and redistribution: the data must be provided under terms that permit reuse and redistribution including the intermixing with other datasets. The data shall be machine-readable.   Universal participation: everyone must be able to use, reuse and redistribute the data— which by means there should be no discrimination against fields of endeavor or against persons or groups. For example, “non-commercial” restrictions that would prevent “commercial” use, or restrictions of use for certain purposes are not allowed.   In order to be in tune with international developmental trends, Taiwan passed an executive resolution in favor of promoting Open Government Data in November 2012. Through the release of government data, open data has grown significantly in Taiwan and Taiwan has come out on top among 122 countries and areas in the 2015 and 2016 Global Open Data Index[1].   The result represented a major leap for Taiwan, however, progress is still to be made as most of the data are from the Government, and data from other territories, especially from private sector can rarely be seen. It is a pity that data from private sector has not being properly utilized and true value of such data still need to be revealed. The following research will place emphasis to enhance the value of private data and the strategies of boosting private sector to open their own data. Ⅱ. Why open private data   With the trend of Open Government Data recent years, countries are now starting to realize that Open Government Data is improving transparency, creating opportunities for social and commercial innovation, and opening the door to better engagement with citizens. But open data is not limited to Open Government Data. In fact, the private sector not only interacts with government data, but also produces a massive amount of data, much of which in need of utilized.   According to the G20 open data policy agenda made in 2014, the potential economic value of open data for Australia is up to AUD 64 billion per annum, and the potential value of open data from private sector is around AUD 34 billion per annum. Figure 1 Value of open data for Australia (AUD billion per annum) Source: McKinsey Global Institute   The purpose for opening data held by private entities and corporations is rooted in a broad recognition that private data has the potential to foster much public good. Openness of data for companies can translate into more efficient internal governance frameworks, enhanced feedback from workers and employees, improved traceability of supply chains, accountability to end consumers, and with better service and product delivery. Open Private Data is thus a true win-win for all with benefiting not only the governance but environmental and social gains.   At the same time, a variety of constraints, notably privacy and security, but also proprietary interests and data protectionism on the part of some companies—hold back this potential. Ⅲ. The cases of Open Private Data   Syngenta AG, a global Swiss agribusiness that produces agrochemicals and seeds, has established a solid foundation for reporting on progress that relies on independent data collection and validation, assurance by 3rd party assurance providers, and endorsement from its implementing partners. Through the website, Syngenta AG has shared their datasets for agricultural with efficiency indicators for 3600 farms for selected agro-ecological zones and market segments in 42 countries in Europe, Africa, Latin America, North America and Asia. Such datasets are precious but Syngenta AG share them for free only with a Non-Commercial license which means users may copy and redistribute the material in any medium or format freely but may not use the material for commercial purposes. Figure 2 Description and License for Open data of Syngenta AG Source: http://www.syngenta.com   Tokyo Metro is a rapid transit system in Tokyo, Japan has released information such as train location and delay times for all lines as open data. The company held an Open Data Utilization Competition from 12 September to 17 November, 2014 to promote development of an app using this data and continues to provide the data even after the competition ended. However, many restrictions such as non-commercial use, or app can only be used for Tokyo Metro lines has weakened the efficiency of open data, it is still valued as an initial step of open private data. Figure 3 DM of Tokyo Metro Open data Contest Source: https://developer.tokyometroapp.jp/ Ⅳ. How to enhance Open Private Data   Open Private Data is totally different from Open Government Data since “motivation” is vital for private institutions to release their own data. Unlike the government data can be disclosed and free to use via administrative order or legislation, all of the data controlled by private institutions can only be opened under their own will. The initiative for open data therefore shall focus on how to motivate private sectors releasing their own data-by ensuring profit and minimizing risks.   Originally, open data shall be available freely for everyone to use without any restrictions, and data owners may profit indirectly as users utilizing their data creating apps, etc. but not profit from open data itself. The income is unsteady and data owners therefore lose their interest to open data. As a countermeasure, it is suggested to make data chargeable though this may contradict to the definition of open data. When data owners can charge by usage or by time, the motivation of open data would arise when open data is directly profitable.   Data owners may also worry about many legal issues when releasing their own data. They may not care about whether profitable or not but afraid of being involved into litigation disputes such as intellectual property infringement, unfair competition, etc. It is very important for data owners to have a well protected authorization agreement when releasing data, but not all of them is able to afford the cost of making agreement for each data sharing. Therefore, a standard sample of contract that can be widely adopted plays a very important role for open private data.   A data sharing platform would be a solution to help data owners sharing their own data. It can not only provide a convenient way to collect profit from data sharing but help data owners avoiding legal risks with the platform’s standard agreement. All the data owners have to do is just to transfer their own data to the platform without concern since the platform would handle other affairs. Ⅴ. Conclusion   Actively engaging the private sector in the open data value-chain is considered an innovation imperative as it is highly related to the development of information economy. Although many works still need to be done such as identifying mechanisms for catalyzing private sector engagement, these works can be done by organizations such as the World Bank and the Centre for Open Data Enterprise. Private-public collaboration is also important when it comes to strengthening the global data infrastructure, and the benefits of open data are diverse and range from improved efficiency of public administrations to economic growth in the private sector. However, open private data is not the goal but merely a start for open data revolution. It is to add variation for other organizations and individuals to analyze to create innovations while individuals, private sectors, or government will benefit from that innovation and being encouraged to release much more data to strengthen this data circulation. [1] Global Open Data Index, https://index.okfn.org/place/(Last visited: May 15, 2017)

Impact of Government Organizational Reform to Scientific Research Legal System and Response Thereto (2) – For Example, The Finnish Innovation Fund (“SITRA”)

Impact of Government Organizational Reform to Scientific Research Legal System and Response Thereto (2) – For Example, The Finnish Innovation Fund (“SITRA”) III. Comparison of Strength and Weakness of Sitra Projects 1. Sitra Venture Capital Investment Model   In order to comprehend how to boost innovation business development to upgrade innovation ability, we analyze and compare the innovation systems applied in Sweden, France and Finland[1] . We analyze and compare the characteristics, strength and weakness of innovation promotion models in terms of funding, networking and professional guidance. Generally, the first difficulty which a start-up needs to deal with when it is founded initially is the funding. Particularly, a technology company usually requires tremendous funding when it is founded initially. Some potentially adequate investors, e.g., venture capitals, seldom invest in small-sized start-up (because such overhead as supervision and management fees will account for a high percentage of the investment due to the small total investment amount). Networking means how a start-up integrates such human resources as the management, investors, technical advisors and IP professionals when it is founded initially. Control over such human resources is critical to a new company’s survival and growth. Professional guidance means how professional knowledge and human resource support the start-up’s operation. In order to make its product required by the market, an enterprise usually needs to integrate special professional knowledge. Notwithstanding, the professional knowledge and talents which are available from an open market theoretically often cannot be accessed, due to market failure[2].   Assuming that Sitra’s funding is prioritized as Pre-seed-Initiation stage, Seed-Development stage and Follow-up – Growth stage, under Finland model, at the Pre-seed-Initiation stage, Sitra will provide the fund amounting to EUR20,000 when Tekes will also provide the equivalent fund, provided that the latter purely provides subsidy, while the fund provided by Sitra means a loan to be repaid (without interest) after some time (usually after commercialization), or a loan convertible to shares. Then, the loan would be replaced by soft or convertible (to shares) investment and the source of funding would turn to be angel investors or local seed capital at the Seed-Development stage. At this stage, the angel investors, local seed capital and Sitra will act as the source of funding jointly in Finland, while Tekes will not be involved at this stage. At the Follow-up-Growth stage, like the Sweden model, Sitra will utilize its own investment fund to help mitigate the gap between local small-sized funding and large-sized international venture capital[3].   How to recruit professional human resources is critical to a start-up’s success. Many enterprises usually lack sufficient professional human resources or some expertise. DIILI service network set up by Sitra is able to provide the relevant solutions. DILLI is a network formed by product managers. Its members actively participate in starts-up and seek innovation. They also participate in investment of starts-up independently sometimes. Therefore, they are different from angel investors, because they devote themselves to the starts-up on a full-time basis[4]. In other words, they manage the starts-up as if the starts-up were their own business. 2. Key to Public Sector’s Success in Boosting Development of Innovation Activity Business   In terms of professional guidance, voluntary guidance means the direct supply of such professional resources as financing, human resource and technology to starts-up, while involuntary guidance means the supply of strategic planning in lieu of direct assistance to help the enterprises make routine decisions[5]. The fractured and incomplete professional service attendant market generates low marginal effect. Therefore, it is impossible for the traditional consultation service to mitigate such gap and the investment at the pre-seed initiation stage will be excessive because of the acquisition of the professional services. Meanwhile, professional advisors seldom are involved in consultation services at the pre-seed initiation stage of a start-up because of the low potential added value. Therefore, at such stage, only involuntary professional guidance will be available usually. Under Sitra model, such role is played by an angel investor.   Upon analysis and comparison, we propose six suggested policies to boost innovation activities successfully as the reference when observing Sitra operation. First of all, compared with the French model, Finland Sitra and Sweden model set more specific objectives to meet a start-up’s needs (but there is some defect, e.g., Sitra model lacks voluntary professional guidance). Second, structural budget is a key to the successful model. Sitra will receive the funds in the amount of EUR235,000,000 from the Finnish Government, but its operating expenditure is covered by its own operating revenue in whole. Third, it is necessary to provide working fund in installments and provide fund at the pre-seed-initiation stage. Under both of Finland model and Sweden model, funds will be provided at the pre-seed-initiation stage (Tekes is responsible for providing the fund in Finland). Fourth, the difficulty in networking must be solved. In Sitra, the large-sized talent network set up by it will be dedicated to recruiting human resources. Fifth, the voluntary professional guidance is indispensable at the pre-seed-initiation stage, while the same is unavailable at such stage under Sitra model. Instead, the Sweden model is held as the optimal one, as it has a dedicated unit responsible for solving the difficulty to seek profit. Sixth, soft loan[6] will be successfully only when the loan cannot be convertible to shares. At the pre-seed initiation stage or seed-development stage, a start-up is usually funded by traditional loan. Assuming that the start-up is not expected to gain profit, whether the loan may be convertible to shares will also be taken into consideration when the granting of loan is considered (therefore, the fund provider will not be changed to the “capital” provider). Besides, the government authorities mostly lack the relevant experience or knowledge, or are in no position to negotiate with international large-sized venture capital companies. For example, under the French model, the government takes advantage of its power to restrict the venture capital investment and thereby renders adverse impact to starts-up which seek venture capital. Finally, the supply of own fund to meet the enterprises’ needs at seed-development stage and follow-up-growth stage to mitigate the gap with large-sized venture capital[7] is also required by a successful funding model. IV. Conclusion-Deliberation of Finnish Sitra Experience   As the leading national industrial innovation ability promoter in Finland, Sitra appears to be very characteristic in its organizational framework or operating mechanism. We hereby conclude six major characteristics of Sitra and propose the potential orientation toward deliberation of Taiwan’s industrial innovation policies and instruments. 1. Particularity of Organizational Standing   In consideration of the particularity of Sitra organizational standing, it has two characteristics observable. First, Sitra is under supervision of the Finnish Parliament directly, not subordinated to the administrative organizational system and, therefore, it possesses such strength as flexibility and compliance with the Parliament’s requirements. Such organization design which acts independently of the administrative system but still aims to implement policies has been derived in various forms in the world, e.g., the agency model[8] in the United Kingdom, or the independent apparatus in the U.S.A. Nevertheless, to act independently of the administrative system, it has to deal with the deliberation of responsible political principles at first, which arouses the difficulty in taking care of flexibility at the same time. In Taiwan, the intermediary organizations include independent agencies and administrative corporations, etc., while the former still involves the participation of the supreme administrative head in the right of personnel administration and is subordinated to the ministries/departments of the Executive Yuan and the latter aims to enforce the public missions in the capacity of “public welfare” organization. Though such design as reporting to the Parliament directly is not against the responsible political principles, how the Parliament owns the authority to supervise is the point (otherwise, theoretically, the administrative authorities are all empowered by the parliament in the country which applies the cabinet system). Additionally, why some special authorities are chosen to report to the parliament directly while other policy subjects are not is also disputable. The existence of Sitra also refers to a circumstantial evidence substantiating that Finland includes the innovation policy as one of the important government policies, and also the objective fact that Finland’s innovation ability heads the first in the world.   Second, Sitra is a self-sufficient independent fund, which aims to promote technical R&D and also seeks profit for itself, irrelevant with selection of adequate investment subjects or areas. Instead, for this purpose, the various decisions made by it will deal with the utility and mitigate the gap between R&D and market. Such entity is responsible for public welfare or policy projects and also oriented toward gain from investment to feed the same back to the individuals in the organization. In the administrative system, Sitra is not directed by the administrative system but reports to the Parliament directly. Sitra aims to upgrade the national R&D innovation ability as its long-term goal mission and utilizes the promotion of innovation business and development of venture capital market. The mission makes the profit-orientation compatible with the selection of investment subjects, as an enterprise unlikely to gain profit in the future usually is excluded from the national development view. For example, such industries as green energy, which is not likely to gain profit in a short term, is still worth investing as long as it meets the national development trend and also feasible (in other words, selection of marketable green technology R&D, instead of comparison of the strength and weakness in investment value of green energy and other high-polluted energy). 2. Expressly Distinguished From Missions of Other Ministries/Departments   For the time being, Sitra primarily invests in starts-up, including indirect investment and direct investment, because it relies on successful new technology R&D which may contribute to production and marketability. Starts-up have always been one of the best options, as large-sized enterprises are able to do R&D on their own without the outsourcing needs. Further, from the point of view of an inventor, if the new technology is marketable, it will be more favorable to him if he chooses to start business on his own or make investment in the form of partnership, instead of transfer or license of the ownership to large-sized enterprises (as large-sized enterprises are more capable of negotiation). However, note that Sitra aims to boost innovation activities and only targets at start-up business development, instead of boosting and promoting the start-up per se. Under the requirement that Sitra needs to seek profit for itself, only the business with positive development view will be targeted by Sitra. Further, Sitra will not fund any business other than innovation R&D or some specific industries. Apparently, Sitra only focuses on the connection between innovation activities and start-up, but does not act as the competent authority in charge of small-sized and medium-sized enterprises.   Meanwhile, Sitra highlights that it will not fund academic research activities and, therefore, appears to be distinguished from the competent authority in charge of national scientific research. Though scientific research and technology innovation business, to some extent, are distinguished from each other in quantity instead of quality, abstract and meaningless research is existent but only far away from the commercialization market. Notwithstanding, a lot of countries tend to distinguish basic scientific research from industrial technology R&D in the administration organization's mission, or it has to be. In term of the way in which Sitra carries out its mission, such distinguishing ability is proven directly. 3. Well-Founded Technology Foresight-Based Investment Business   The corporate investments, fund investments and project funding launched by Sitra are all available to the pre-designated subjects only, e.g. ecological sustainable development, energy utilization efficiency, and social structural changes, etc. Such way to promote policies as defining development area as the first priority and then promoting the investment innovation might have some strength and weakness at the same time. First of all, the selection of development areas might meet the higher level national development orientation more therefor, free from objective environmental restrictions, e.g. technical level, leading national technology industries and properties of natural resources. Notwithstanding, an enterprise’s orientation toward innovation R&D might miss the opportunity for other development because of the pre-defined framework. Therefore, such way to promote policies as defining development areas or subjects as the first priority will be inevitably based on well-founded technology foresight-based projects[9], in order to take various subjective and objective conditions into consideration and to forecast the technology development orientation and impact to be faced by the home country’s national and social economies. That is, said strength and weakness will be taken into consideration beforehand for foresight, while following R&D funding will be launched into the technology areas pre-designated after thorough analysis. 4. Self-Interested Investment with the Same High Efficiency as General Enterprises   Sitra aims to gain profit generally, and its individual investment model, e.g., DIILI, also permits marketing managers to involve business operation. The profit-sharing model enables Sitra to seek the same high efficiency as the general enterprises when purusing its innovation activity development. The investment launched by Sitra highlights that it is not “funding” (which Tekes is responsible for in Finland) or the investment not requiring return. Therefore, it has the system design to acquire corporate shares. Sitra participates in a start-up by offering its advanced technology, just like a general market investor who will choose the potential investment subject that might benefit him most upon his personal professional evaluation. After all, the ultimate profit will be retained by Sitra (or said DIILI manger, subject to the investment model). Certainly, whether the industry which requires permanent support may benefit under such model still remains questionable. However, except otherwise provided in laws expressly, said special organization standing might be a factor critical to Sitra profit-seeking model. That is, Sitra is not subordinated to the administrative system but is under supervision of the parliament independently, and how its staff deal with the conflict of interest issues in the capacity other than the public sector’s/private sector’s staff is also one of the key factors to success of the system. 5. Investment Model to Deal With Policy Instruments of Other Authorities/Agencies   Sitra decides to fund a start-up depending on whether it may gain profit as one of its priorities. As aforesaid, we may preliminarily recognize that the same should be consistent with funding to starts-up logically and no “government failure” issue is involved. For example, the funding at the pre-seed-initiation stage needs to tie in with Tekes’ R&D “funding” (and LIKSA service stated herein) and, therefore, may adjust the profit-seeking orientation, thereby causing deviation in promotion of policies. The dispute over fairness of repeated subsidy/funding and rationality of resource allocation under the circumstance must be controlled by a separate evaluation management mechanism inevitably. 6. Affiliation with Enhancement of Regional Innovation Activities   Regional policies cannot be separable from innovation policies, especially in a country where human resources and natural resources are not plentiful or even. Therefore, balancing regional development policies and also integrating uneven resource distribution at the same time is indispensable to upgrading of the entire national social economic benefits. The Finnish experience indicated that innovation activities ought to play an important role in the regional development, and in order to integrate enterprises, the parties primarily engaged in innovation activities, with the R&D ability of regional academic research institutions to upgrade the R&D ability effectively, the relevant national policies must be defined for adequately arranging and launching necessary resources. Sitra's approaches to invest in starts-up, release shares after specific period, integrate the regional resources, upgrade the national innovation ability and boost the regional development might serve to be the reference for universities’ centers of innovative incubator or Taiwan’s local academic and scientific sectors[10] to improve their approaches.   For the time being, the organization engaged in venture capital investment in the form of fund in Taiwan like Sitra of Finland is National Development Fund, Executive Yuan. However, in terms of organizational framework, Sitra is under supervision of the Parliament directly, while National Development Fund is subordinated to the administrative system of Taiwan. Though Sitra and National Development Fund are both engaged in venture capital investments primarily, Sitra carries out its missions for the purpose of “promoting innovative activities”, while the National Development Fund is committed to achieve such diversified goals as “promoting economic changes and national development[11]” and is required to be adapted to various ministries’/departments’ policies. Despite the difference in the administrative systems of Taiwan and Finland, Sitra system is not necessarily applicable to Taiwan. Notwithstanding, Sitra’s experience in promotion and thought about the system might provide a different direction for Taiwan to think when it is conceiving the means and instruments for industrial innovation promotion policies in the future. [1] Bart Clarysse & Johan Bruneel, Nurturing and Growing Innovation Start-Ups: The Role of Policy As Integrator, R&D MANAGEMENT, 37(2), 139, 144-146 (2007). Clarysse & Bruneel analysis and comparison refers to Sweden Chalmers Innovation model, French Anvar/Banque de Developpement des PMEs model and Finland Sitra PreSeed Service model. [2] id. at 141-143. [3] id. at 141. [4] id. at 145-146. [5] id. at 143. [6] The loan to be repaid is not a concern. For example, the competent authority in Sweden only expects to recover one-fourths of the loan. [7] Clarysse & Bruneel, super note 26, at 147-148. [8] 彭錦鵬,〈英國政署之組織設計與運作成效〉,《歐美研究》,第30卷第3期,頁89-141。 [9] Technology foresight must work with the innovation policy road mapping (IPRM) interactively, and consolidate the forecast and evaluation of technology policy development routes. One study case about IPRM of the environmental sustainable development in the telecommunication industry in Finland, the IPRM may enhance the foresighted system and indicates the potential factors resulting in systematic failure. Please see Toni Ahlqvist, Ville Valovirta & Torsti Loikkanen, Innovation policy road mapping as a systemic instrument for forward-looking policy design, Science and Public Policy 39, 178-190 (2012). [10] 參見李昂杰,〈規範新訊:學界科專辦法及其法制配套之解析〉,《科技法律透析》,第23卷第8期,頁33(2011)。 [11] National Development Fund, Executive Yuan website, http://www.df.gov.tw/(tftgkz45150vye554wi44ret)/page-aa.aspx?Group_ID=1&Item_Title=%E8%A8%AD%E7%AB%8B%E5%AE%97%E6%97%A8#(Last visit on 2013/03/28)

TOP