Copyright Ownership for Outputs by Artificial Intelligence

Copyright Ownership for Outputs by Artificial Intelligence

One. Introduction

I. From Machine Learning to Deep Learning, AI is Thinking

  The famous philosopher, mathematician and physicist René Descartes from France in the 17th century said: “Cogito ergo sum”. This is considered a radical skepticism in the context of philosophy. When a philosopher raises the question that how one person can be sure of his/her existence, it is not about the feeling, cognition or experience with the world. Rather, it is about thinking.

  Artificial intelligence works like interconnected human neurons, with the logics and algorithms built with codes and processed with high speed. The nutrient it requires is the massive amount of data. In the past, artificial intelligence only works according to the logical setup and instructions from developers. In the era of machine learning today, humans have empowered machines with the capability of processing. This is achieved not by writing comprehensive and exhaustive rules. Rather, it is by making machines able to figure out rules on their own. In other words, all we need to do is to prepare data. Machines can be trained to think and judge. Artificial intelligence will eventually generate its outputs and start to create contents.

  Image recognition is a good illustration of how machine learning works, as part of the wider AI. The identification of cats is a classic example. A large number of pictures and photos of cats are provided, with descriptions of features to train machines. The purpose is to train machines into building their own criteria as to what cats are about. According to the Proceedings of the Seventh IEEE International Conference on Computer Vision in 1999, image recognition is processed with the technology similar with neurons for visual recognition by primates[1].

  Twenty years on, machine learning (as part of artificial intelligence) has come a long way. The number of neural network models, built on neurons, has grown exponentially[2]. Deep learning has been developed with layers of neurons. There are links only between neighbouring layers to reduce the number of variables and enhance the speed of computing. In the context of machine learning, learning is about the selection of an optimal solution from multiple variables[3]. Big data is fed into the man-made neural networks constructed in the computers so that they are constantly trained and learning. Hung-yi Lee[4], a scholar specialized in artificial intelligence in Taiwan, provides a simple analogy for this technology. Machine learning is like a human brain with one layer of neurons; whilst deep learning works with many neurons and hence can learn on their own, make judgement and establish logics[5]. In other words, artificial intelligence is capable of analysing, identifying and decision-making on its own, and human is becoming less relevant in this process. Artificial intelligence is able to think. This is not only a factual description, but also a trigger to fundamentally change the legal institution of nations.

II. Who Owns the Outputs Generated with Thinking?

  Over the long run, whether the legal institution and the society are ready to give artificial intelligence “quasi” right of personality is a topic worth exploring. In the immediate term, what normative models should be used to define the ownership of copyrights for the outputs and creations by artificial intelligence?

  The decision on copyright ownership has always been a hot topic in the field of intellectual property. The legal system in the U.S. describes the protected entity for copyright as “the fruits of the intellectual labor”. Article 798 of the Civil Code in Taiwan says, “Fruits that fall naturally on an adjacent land are deemed to belong to the owner of such land, except if it is a land for public use”. The fruit, i.e. outputs generated by artificial intelligence, also falls into the society of rules governed by rights and obligations. Of course, it is necessary to first define and regulate the entity that owns the rights. This begs many fundamental questions in the context of copyright laws. Who owns the rights? The developers (perhaps on a pro-rata basis), data owners, or the companies that provide infrastructure to developers? Once the boundary of imagination and reality is pushed further, the ownership of rights is no longer limited to human creators and may be extended to artificial intelligence. Moreover, it is possible for governments to insist that copyrights are only for human creations and the intellectual property created by artificial intelligence may fall into the public domain and hence fall unprotected legally, given the significance of public interest involved.

  This paper explores the copyright ownership for the outputs generated by artificial intelligence by systemically observing the real-life cases in the industry. This is followed with an analysis on the perspectives from the European Union, the United Kingdom and the United States. The purpose is to examine the contexts and normative models of artificial intelligence and copyrights and finally develop a preliminary framework for the regulation of artificial intelligence now and the future.

Two. Creativity Capability of Artificial Intelligence Is a Reality

  With artificial intelligence and Big Data driving the development of industries, the exploration with the construction and normative models of the legal system should start with the reflection of social values, so as to achieve the purpose of social order with laws and regulations.

  The construction of the legal system for technology should be anchored on the observation of facts, given the rapid advancement and evolution of emerging technologies. The fact today is that artificial intelligence is being used for art creations such as musical composition, poetry and painting. Developers train artificial intelligence with massive data and enable deep learning to grasp the essence of artworks in order to generate outputs. Whether the ultimate purpose is commercial profitability or not, most of these outputs have reached a certain level of quality. Below is a brief introduction of creative techniques and new business models of artificial intelligence in music composition, poetry writing, painting and news writing.

I. Original Music Generated with Deep Learning: Fast and User-friendly

  The vibrant development of the Internet has created an online celebrity economy. Youtubers, Internet personalities, cyberstars, Wanghong (or internet fame in Mandarin) produce films or release podcasts to attract the audience for direct/indirect and commercial/non-profit-seeking purposes. The production of such films and live broadcasting, or the creation of original online or PC games creates the demand for background music or sound effects. Ed Newton-Rex, who earned a bachelor of arts degree in music from University of Cambridge, founded JukeDeck[6] after he went to a computer science class in Harvard University. JukeDeck is an online music generator, developed with deep learning(as part of artificial intelligence). This paper believes that JukeDeck meets the industry demand with two offerings[7]:

(I) JukeDeck

  1. Rapid generation of pleasant and unique music with deep learning

    The algorithm design by Ed Newton-Rex with artificial intelligence is different from the generation of background music and other music by the websites that use loop audio files. JukeDeck generates music pleasing to the ears with one tone at a time and avoids repetitions by analyzing musical forms, harmonies and tones with deep learning, so that the users in pursuit of originality and unique can acquire the musical materials within approximately 30 seconds, without worrying that they sound similar with others[8].

  2. Greater flexibility in length to create bespoke styles and feelings

    JukeDeck offers flexibility in the length of music, up to five minutes depending on the preference of users. An extension is possible by mixing up different fragments. It is also possible to define musical styles and formats, e.g. piano, folksongs, electro and ambient music[9], as well as the feelings to be aroused, such as uplifting and melancholic. The music generated by deep learning is different from the free or paid music databases which use the so-called canned music and suffer the problems of mismatches between the film length and music length[10].

(II) Amper Music

  Amper Music was founded by the Hollywood songwriter Drew Silverstein (founder/CEO), Sam Estes and Michael Hobe[11] with the ambition to take a step further from music generation by artificial intelligence. In the spring of 2018, the company raised another $4 million for the development of music composition with artificial intelligence, the expansion of international markets and the recruitment of more talents. In the press release, Drew Silverstein said, “Amper’s rapid growth is a testament to how the massive growth of media requires a technological solution for music creation. Amper’s value stems not only from the means to collaborate and create music through AI, but also from its ability to help power media at a global scale.”[12]

  Similar with JukeDeck’s appeal to the public, Amper Music’s artificial intelligence allows users with no musical experience to create real-time and order original music[13]. It supports all the media formats. All is required is the choice for rhythms, styles and musical instruments desired[14]. Meanwhile, Amper Music posits that its music is royalty free, and comes with a global, perpetual license when synced to the outputs. In other words, users do not have to worry about legal procedures or financial costs[15].

II. Writing Pens Take Flight: A Challenge to the Fundamental of Literary Creation and Trigger for Labor Transformation

  Neuhumanismus (or Neohumanism) is about the achievement of self-mastery and humanity ideals through the study of classics. Compared with humanism, neohumanism places a greater focus on emotional expression and artistic creation. It also emphasizes the importance of language learning to self-realization of individuals.[16] After studying the works of 519 contemporary poets in the Chinese society, artificial intelligence has published modern poetry and made successful inroads to the world of literature traditionally driven by emotions and imaginations. In fact, it has posed a credible challenge to the human-centric humanism where only humans are endowed with the gift of artistic creativity. Artificial intelligence has been nominated for literary awards, evidenced of the quality of outputs generated by deep learning. With the support of massive data and analytics, it is only a matter of time for artificial intelligence to possess the literary creativity comparable to humans.

  However, the concern for originality in literature and the issues surrounding plagiarism and copyrights are the key determinants that influence of literary creation by artificial intelligence. This begs the questions about the ethics of literary creation. It is necessary to start with an understanding of how artificial intelligence creates, before the analysis of ethical and regulatory frameworks.

(I) Xiaoice’s Collection “Sunshine Misses Windows”

  Xiaoice is the chatbot launched by Microsoft’s Software Technology Center Asia (STCA) in China in 2014. In 2017, Xiaoice published her collection of poems “Sunshine Misses Windows”[17], written by looking at pictures. The deep learning algorithms behind were co- developed by Wu Zhao-Zhong and Cheng Wen-Feng, two students in the Graduate Institute of Networking and Multimedia, National Taiwan University.

  The artificial intelligence writes poetry with the following methodology[18]:

  1. Use of image recognition technology to identify the keywords in the pictures: The adoption of image recognition technology developed by Microsoft’s Software Technology Center Asia (STCA) to identify the nouns in the pictures such as the bridge, skies and trees and the adjectives that express feelings such as beautiful or annoying.
  2. Matching of keywords from the training database: The training data for the matching of keywords and poetry database was the works of a total of 519 contemporary poets since the 1920s. The purpose was to fill in the gap between keywords and training data.
  3. Generation of poems: deep learning trained in the language model with keywords to create poems
  4. Improvement of poems: literary professionals and readers invited to give ratings. Submission of writings as an anonymous author to improve Xiaoice’s capability.

  The above is a summary of Xiaoice’s creative journey. Microsoft claims that the collection of poems was 100% written by Xiaoice, and it is the first collection of poems 100% written by artificial intelligence in history. The poems were not edited by humans and wrong characters were maintained as they were. The title “Sunshine Misses Windows” was also named by Xiaoice herself[19]. Despite all these, the originality and even the most fundamental “literality” of these poems are still questioned.

  At the end of 2018, the Research Institute for Humanities and Social Sciences, Ministry of Science & Technology and National Taiwan University organized the forum “Culture and Technology II: AI’s Literature Dream — Sunshine Misses Windows. Does Humanity Have a Boundary?” The professor in the Department of Chinese Literature, National Taiwan University and the poet Tang Juan discussed Xiaoice’s works[20] and commented as a critic of contemporary poetry. Xiaoice uses extensively the same vocabulary (such as the beach). Unable to use punctures, she can only break sentences and lines. Most importantly, her writings do not reflect our times and real experience. In other words, Xiaoice’s poems do not possess the unique perspective and soul of poets and literary characters. This may be the outcome of her reading of works from 519 poets from the 1920s. As a result, she is not able to connect with our times and real life and finds it difficult to resonate the shared emotions of people today. Tang Juan’s comment is more than just about literature. It is also about the selection and sourcing of training data, a prerequisite for the development of artificial intelligence, as well as the cost and consideration for copyright licensing.

  The research and development by corporates in artificial intelligence requires the corresponding and suitable training materials, particularly in the domain of literature. As commented by the poet Tang Juan, it requires extensive sources of contemporary works. It means the increasing difficulty to circumvent the works still protected by copyrights. If this cost consideration remains a hurdle, it is impossible to make improvements in further research. Put differently, the composition of training data is potentially a cost concern for copyright licensing. Before the legal system becomes well-developed and the establishment of consensus on the issues concerning training data, the possible infringement is an absolutely necessary balancing act for any robust developers and companies involved in artificial intelligence.

(II) Yuurei Raita’s “The Day A Computer Writes A Novel”

  In 2013, Nikkei started to offer the Nikkei Hoshi Shinichi Literary Award to outstanding short Si-Fi novels, as a tribute to the late science fiction writer Hoshi Shinichi[21]. Three years later, Yuurei Raita’s “The Day A Computer Writes A Novel” appeared on Nikkei’s list of acceptance for competition. Miss Yoko is the leading character in this 2000-character short sci-fi novel[22]. Raita-kun is in fact an artificial intelligence team “Wagamama artificial intelligence as a writer” led by Hitoshi Matsubara, President of the Japanese Society of Artificial Intelligence and a professor in Future University[23]. Below is a description of their deep learning techniques[24]:

  1. Analysis of writing styles from training data:

    The team provides training data as the learning basis for artificial intelligence. (For this competition, the data is approximately 1,000 short stories written by Hoshi Shinichi.) The purpose is to analyze the frequently used words, novel structures and characters.

  2. Resource integration by the team:

    The team integrates the analyzed data with online information, storyline programs, human emotions and settings, and decides on characters, contents and plots[25]. Researchers provide three instructions, i.e., when, the weather, doing what so that artificial intelligence automatically generates detailed and tangible contents.

  3. Automatic generation of new works:

    Artificial intelligence refines the details and polishes the texts, to generate the new story by Hoshi Shinichi with fragments such as: “The same temperature and humidity in the room is maintained as usual. Yoko sits idly on the sofa, dishevelled and playing a dull game uninterested.”

  The procedures of novel contents generation described above indicate that artificial intelligence still relies on humans for setups and assistance. In contrast with the claim by the Microsoft team that Xiaoice is 100% artificial intelligence, the team in Japan confessed that artificial intelligence writing is still in a nascent stage.

  At least in literature types such as novels, artificial intelligence still needs appropriate guidance from humans for necessary writing elements, in order to generate and connect fragments to establish the finalized pieces. In general, artificial intelligence can only be held responsible for 20% of work[26]. However, the development of technology continues at its pace. When it is no longer easy to differentiate a piece of creative writing is by humans or by machines, the limitation of copyright protection to human’s creative works will be an obsolete approach.

(III) Tencent: Robot “Dreamwriter”

  The above two AI writing teams focus on creative literature. In China, Tencent has developed Dreamwriter to rapidly generate news products. In the 2018 International Media Conference in Singapore[27] hosted by the East West Center, a think tank in the U.S. at the end of June 2018, Tencent demonstrated its translation engine. Speakers spoke in Chinese and the engine did simultaneous translation into English shown on the projector screen[28].

  Tencent’s artificial intelligence “Dreamwriter” project started as a push engine for news flashes such as sports events. It later extended into financial and economic data and reporting, a field with extensive data and conducive to AI development and ML acceleration[29]. Dreamwriter only takes half to one second to generate a piece of news. It can generate approximately 5,000 articles per day, equivalent to the output of 208 journalists. This implies a transformation of labor requirements in journalism. Human reporters will be involved in in-depth coverage that requires creativity, industry knowledge and judgement[30], whilst basic and factual reporting will be completed by artificial intelligence.

III. Brave New Work for Paintings: Rights Ownership in the Presence of Sophisticated Deep Learning

  In the autumn/winter of 2018, the Paris-based AI team Obvious presented “Portrait of Edmond Belamy”[31] in Prints & Multiples auction in New York. This painting was sold for a surprising high price of[32] $432,000 (or over NT$13 million)[33], as the first AI-generated painting being auctioned. The Obvious team focuses on Generative Adversarial Network (GAN)[34], a hot topic for the development of deep learning.

(I) Technique to Improve Deep Learning: Generative Adversarial Network (GAN)

  The GAN technique was developed by Ian Goodfellow[35] in 2014 to promote and enhance deep learning by massively reducing the amount of training data required and cutting down on human intervention, assistance and involvement[36].

  The GAN method can be illustrated in a high level by referring to the classical example of the image recognition for cats previously mentioned. The neural network model (as a deep learning technique) enables artificial intelligence to learn how to identify cats from a massive volume of pictures of cats. However, it is necessary for humans to train the machine by providing signs and feature descriptions for each picture. In contrast, the GAN technique is about the training of two competing networks,[37] i.e., a generative network and a discriminant network[38]. The generative network is responsible for generating the pictures that resemble real cats (i.e. made-believe cats) and the discriminant network reviews and determine whether the pictures are authentic. The two networks enhance capabilities by competing with each other. The idea is to improve the learning and competence of deep learning[39].

(II) Application in the Art of Paintings

  The GAN method can be used to generate paintings such as “Portrait of Edmond Belamy”. It can also identify fake paintings. Founder/CEO Jensen Huang of Nvidia, a leading artificial intelligence company, said in a forum that the GAN technique allows one neural network to paint the pictures in the Picasso style and the other network to identify images and paintings with unprecedented discriminant capabilities[40]. The seventh year of the Lumen Prize gave the biggest award to a nude portrait generated with the GAN technique[41]. The GAN applications have been mushrooming – turning a scribble into an art, a low-definition picture into a high-definition one, an aerial graph into a photo[42].

  Below is a brief description of the concepts and procedures for the Obvious research team’s completion of “Portrait of Edmond Belamy”[43]:

  1. Analysis of portraits from training data: A total of 15,000 portraits from the 14th century to the 20th century as the training data
  2. Generative network vs. discriminant network: The generative network generates paintings on the basis of training data. The discriminant network seeks to identity the difference from human-created paintings in order to improve the capability of the generative network. This process continues until the discriminant network is no longer to tell a machine-created painting from a human-created painting.

(III) Ownership of Rights to High Economic Value of Artworks

  The winning of the Lumen Prize in the UK by the nude portrait generated by artificial intelligence and the surprisingly high auction price paid for Portrait of Edmond Belamy are the testimony of the artificial intelligence’s creative capability. The ownership of the right to the monetary value of these artworks is a topic worthy of exploration.

  “The development team ‘Obvious’ for ‘Portrait of Edmond Belamy’ posits that if the author is the person who paints the painting, it is artificial intelligence. If the author is the person who seeks to convey a message, it is us[44]. The human’s role is being undermined as deep learning technology becomes increasingly sophisticated. Going forward, can artificial intelligence become the owner of rights? What should be the regulatory framework for now? At this juncture, this paper conducts an international comparison by examining how different governments consider the emerging legal issues.

Three. Copyright Ownership of Works Created by Artificial Intelligence

  The explanatory ruling by the Copyright Division, Intellectual Property Office, Ministry of Economic Affairs issued in 2018[45] has expressed the Taiwan government’s stance on the issue of whether the outputs generated by artificial intelligence can enjoy copyrights. Below is the summary:

  1. Presumption: Article 10 and Article 33 of the Copyright Law[46] stipulates that only natural persons or legal persons can be the owner of rights and obligations pertaining to creative works and enjoy the protection of copyrights.
  2. Positioning and logics: The outputs generated by artificial intelligence are the intellectual results expressed by machines created by humans. Machines are neither natural persons or legal persons and hence do not attract copyrights.
  3. Proviso: If the results are created with participation of natural/legal persons and the machines are being operated for analytics, the copyright of the results expressed should belong to the natural/legal persons concerned.

  The above explanatory ruling seems to position artificial intelligence completely as a tool. However, the above example suggests an obvious trajectory for the creative journey for deep learning as an artificial intelligence technique. In the current stage and the foreseeable future, the description that robot analytics are straight mechanical operations is completely obsolete given that artificial intelligence is being applied in industry with dramatically reduced (or even completely without) human intervention and participation.

  It is a worthwhile exercise to explore the international thinking regarding how the legal framework should address the ownership of rights for outputs generated with deep learning as an artificial intelligence technique and the derived services/products by either opening up new legal structures or simply extending on the existing system.

I. European Union

(I) European Parliament: Establishment of Electronic Personhood?

  The European Parliament's Committee on Legal Affairs (JURI) passed a report on January 12, 2018 to provide suggestions to the Civil Law Rules on Robotics and urge the European Commission to set up laws and regulations governing robots and artificial intelligence by defining electronic personhood, similar with legal personhood for corporates as litigation entities for any issues associated with rights and obligations of artificial intelligence[47].

(II) Court of Justice of the European Union: Only Works Accomplished by Humans Eligible for Protection

  The Court of Justice of the European Union’s landmark case Infopaq International A/S v. Danske Dagbaldes Forening[48]suggests that copyrights are only applicable for original works, with originality reflecting the “author’s own intellectual creation.” The general interpretation is that such works should reflect the author’s personality. Hence, only human authors meet this criterion[49]. The third paragraph of Article 1 of the Directive 2009/24/EC also clearly states that only works that are the authors’ own intellectual creation enjoys eligibility for protection[50].

(III) Data Protection: GDPR and Declaration of cooperation on Artificial Intelligence

  The General Data Protection Regulation (GDPR) in European Union attracted significant attention among the companies active in the EU market in 2018. In fact, the GDPR provides comprehensive and representative regulations that have direct influence on technological development of artificial intelligence training, as well as legal protection and right construction on data, the crude oil for deep learning.

  Below are a few examples:

  1. Article 20 on data portability:

    The data subject has the right to receive his/her personal data from the data controller in a structured, commonly used and machine-readable format. This helps the industry to establish metadata and forms the basis of the database for artificial intelligence training. The consistency of metadata will enhance the training.

  2. Article 22 on automated individual decision-making

    The data subject has the right not to be subject to a decision based solely on automated processing. The data controller must lay down suitable measures to safeguard the data subject’s rights.

  3. Article 35 on data protection by design and by default

    This article provides the legal protection of large-scale and systematic monitoring of public and open areas with artificial intelligence and strikes a balance between the use of personal data and the interest of data subjects.

  On top of the GDPR, the 24 member states of the European Union signed the Declaration of Cooperation on Artificial Intelligence in 2018, in order to enhance access to public sector data for the digital single market.

II. United Kingdom

(I) Copyright Law: Source of Laws for Program Developers to Obtain Copyrights

  The copyright laws are stipulated in the Copyright, Designs and Patent Act (CDPA) 9 (3)[51]. It forms the source of the laws that grant copyrights to the developers of computer-generated works. Article 178 of the CDPA defines computer-generated works as the outputs generated by machines without human authors[52].

  In contrast with the Court of Justice of the European Union’s decision that only human authors are eligible for copyright protection, the UK government opens up another door by specifying that program designers can obtain copyrights even if creative sparks come from machines[53]. This system is considered the most efficient because it enhances incentives for investments[54].

(II) Public Sector: Open up Government Data

  The UK government also opens up its data by posting all the official statistics on the website www.data.gov.uk. The Digital Economy Bill provides the legal framework for government agencies to use each other’s data for the benefit of the public, so as to effectively address the issues surrounding frauds and debts and improve the real-timeliness and accuracy of national statistics.

  As part of the Brexit preparation, the UK government has created its own GDPR (2018) to ensure the continued smooth cross-border operations of companies after Brexit. As it offers higher protection of consumers’ data and information, it is worthwhile to refer to the UK GDPR as a template for legal systems and rights frameworks.

III. United States

(I) U.S. Copyright Office: Only Intellectual Achievements of the Human Mind Eligible for Protection

  The case law originated in 1991——Feist Publications v. Rural Telephone Service Company[55]confirms that copyrights protect the creative powers of the mind. In the Naruto v. Slater (2016)[56] case, the court determines that the photos taken by a monkey are not eligible for copyright protection. Article 313.2 of the implementation guidelines of the Copyright Act issued by the U.S. Copyright Office specify that the works created without human authors are not protected by the Copyright Act. The amendment to Article 313.2 in 2017 states clearly that the U.S. Copyright Act only protects the intellectual achievements of the human mind[57]. The U.S. Copyright Act 503.03(a), titled “Works-not originated by a human author” also states that only works created by a human author can register for copyrights[58].

(II) Employment Principle: Enhanced Incentives and Investment Willingness

  The above court judgements and the implementation guidelines of the U.S. Copyright Act indicate that the U.S. Copyright Office does not confer non-human copyright[59]. However, the U.S. judicial rulings have allowed “the work made for hire provision” as exception to the creative authors, in order to encourage corporate investments. The 1909 amendment to the U.S. Copyright Act included the hired employees as authors. Unless otherwise agreed, “the author or proprietor of any work made the subject of copyright by this Act, or his executors, administrators, or assigns, shall have copyright for such work under the conditions and for the terms specified in this Act”. A typical example is the news agency’s employment of full-time journalists to produce editorials. The works by employees are a company’s key copyright assets[60].

(III)Employment/Sponsorship Principle if Realized in Taiwan: Companies Investing in Works to Obtain Copyright Protection

  Article 11 of the R.O.C. Copyright Act stipulates the ownership of the right to the works of employees on a case-by-case and factual basis. The decision is based on the nature of work, e.g., completion under the employer’s instructions or planning, the use of the employer’s budgets or resources. It is not necessarily related to the work hours or locations. In principle, the employee is the author of the works completed by him/her on the job. However, the employment contract supersedes if it specifies that the employer is the author. On the other hand, if the employee is the author, the intellectual property belongs to the employer. The contract supersedes if it specifies that the employee enjoys the intellectual property. Article 12 is about sponsorship and commissioning. Unless specified by the contract, the sponsored owns the intellectual property of his/her works and the sponsor has the right to use such intellectual property[61]. In sum, the ownership of the right to the outputs generated by artificial intelligence is similar with the employment/sponsorship principle. It is not set in the vacuum of legal contexts.

  Therefore, the scholar in Taiwan Lin Li-Chih suggests that the employment principle in the U.S. may be adopted. She posits that when certain conditions are met, artificial intelligence may be treated as the author, so that the outputs generated by artificial intelligence can be protected and the investing research institutes or corporates can own the works[62]. As both legal persons and natural persons can be authors in Taiwan, Lin Li-Chih proposes this approach to resolve disputes given the massive value to be created by artificial intelligence for different applications and the potential lengthy legislative process or laws disconnected from industry expectations. The idea is to avoid the human author requirement from hindering industry investments and innovations for works generated by artificial intelligence[63]. According to the employment/sponsorship principle, deep learning as an artificial intelligence method can be inferred to as the author and then teams and companies that develop the algorithms should own the intellectual property of the works. This will serve as the legal foundation for intellectual property protection.

Four. Conclusion: Legal System and Policy Framework for Emerging Technologies

I. Construction of Laws and Regulations on a Rolling Basis According to the Reality of Emerging Technologies

  Every law has its purpose, and the contents of laws depend on their regulatory objectives. However, such contents should be anchored on facts, in order to align the intended purposes. This is particularly the case for the laws and regulations governing emerging technologies because such laws and regulations should capture the fact of technological developments. The most straightforward and fundamental approach to relax the control of the existing legal mechanism is via communication, coordination and understanding. It can be initiated with more dialogues between the government agency responsible for the construction of the legal environment and the industries and the public as subjects of the laws and regulations.

  Regulators may wish to come up with dedicated laws for the comprehensive coverage of emerging technologies given the lack of understanding about the technology and the sweeping effects of the technology. However, not all technologies require special legislations. According to Frank H Easterbrook’s article “Cyberspace and the Law of the Horse” published by the University of Chicago’s legal journal, it is advised to properly categorize and analyze existing laws and regulations and apply the suitable ones to new technologies for issues surrounding intellectual property, contracts and torts, as if from the Law of the Horse to the Law of Cyberspace[64]. Similarly, the ownership of copyrights associated with artificial intelligence and the governance of emerging technologies such as autonomous driving and robots may be dealt in this way.

  The above analysis on the legal regimes in the European Union, the United Kingdom and the United States highlights two issues concerning the regulation of artificial intelligence and the development of legal environments.

  1. The growing sophistication of deep learning will enhance the capability of artificial intelligence in thinking, analysis and creation, with human intervention expected to be reduced to almost zero.
  2. The legal regime governing emerging technologies cannot stand in the way of technological and industry development or incentives for investment, as originally intended by the intellectual property laws. A balancing act is required.

  This paper thus suggests two models:

  1. Forward-looking approach to label rights ownership with legal articles

    This is the route taken by the UK government, by directly amending the intellectual property laws to specify that intellectual property of artificial intelligence belongs to program developers. It is the most efficient approach of paving the way for technological development by providing incentives to companies and developers.

  2. Adoption of the employment/sponsorship principle in conjunction with safe harbor clauses

    Another approach is without touching on the sensitive issue of law amendments. Judicial rulings or administrative interpretations by competent authorities are gradually released in the context of existing laws. A temporary solution is introduced with the adoption of the employment/sponsorship principle with corresponding templates and references for contract construction in the industry. This can work in conjunction with safe harbor clauses in the long run, by slowly converging the diversity of opinions and perspectives from corporates, government agencies and academic/research institutions. Adjustments by tightening or loosening on a rolling basis should be made in order to work out the optimal boundary and establish the basis for legislation in the next stage.

II. Data as a Prerequisite for Artificial Intelligence Training

  In Taiwan where the legal environment is not yet ready or clear, the ownership of intellectual property for outputs generated by artificial intelligence also involves the potential licensing royalties for the sourcing of training data.

  It is worth noting that the use of data for artificial intelligence may affect the basic human rights due to discrimination or bias resultant from training data or algorithms. Therefore, it is necessary to enhance transparency and the protection of human rights conferred by the constitution with corresponding legal systems and ethical frameworks such as due process and fairness principle[65]. The other critical issue is the training database required for artificial intelligence applications. The government should provide more open data as a policy to support technology development in the corporate world or at research organizations. It is also necessary to make government information the structured metadata in order to enhance the efficiency and quality of research outputs. This is to facilitate added value by private sectors with data as an infrastructure provided by the government. Put differently, the government opens up structured data to empower the research and development of artificial intelligence; whilst the private sectors offer professional technology and development capabilities.

  In terms of promoting data openness and applications, the government assumes greater accountability in the balancing between data use and data protection, the two equally important public interests. As an island of technology, Taiwan should look beyond the horizon of skies and oceans in the era where information and data flows without borders. The Taiwan government should establish the capability in data openness, protection and control by joining international forums. For instance, the government can apply with the APEC to join the Cross-Border Privacy Rules System in order to encourage regional collaborations in data control and construct datasets with the resources of the country. It is important to focus on the process of data collection, processing, analysis and utilization and ensure policies are implemented with the protection of civil and human rights such as the Right to Know, the Right to Withdraw and Citizen Data Empowerment.


[1] David G. Lowe, Object Recognition from Local Scale-Invariant Features, Proceedings of the Seventh IEEE International Conference on Computer Vision, https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=790410 (last visited Dec. 27, 2018) excerpt from “These features share similar properties with neurons in inferior temporal cortex that are used for object recognition in primate vision”.

[2] AI Lesson 101: Illustration of 27 Neural Network Models, Tech Orange, January 24, 2018, https://buzzorange.com/techorange/2018/01/24/neural-networks-compare/ (last visited on December 27, 2018)

[3] Chen Yi-Ting (Bachelor’s Degree from Department of Physics, National Taiwan University, currently a PhD candidate in Department of Applied Physics, University of Stanford), Artificial Intelligence Starts with Neurons, May 3, 2018, https://case.ntu.edu.tw/blog/?p=30715 (last visited on December 27, 2018)

[4] Hung-yi Lee’s personal profile at http://speech.ee.ntu.edu.tw/~tlkagk/. Currently teaching in Department of Electric Engineering, National Taiwan University; previously a guest scientist in MIT's Computer Science and Artificial Intelligence Laboratory (CSAIL); specialization in machine learning and deep learning

[5] Chen Yan-Cheng, Who Is Likely to Lose Jobs in the Era of Artificial Intelligence? Experts Explains the Professional Skills in Demand for Deep Learning, December 26, 2018. https://www.managertoday.com.tw/articles/view/56859 (last visited on December 27, 2018)

[6] Details available on JukeDeck’s official website at https://www.jukedeck.com/(last visited on January 11, 2019)

[7] In addition to the leverage of two key features of artificial intelligence, JukeDeck is also very friendly to creative teams in need of musical materials in terms of royalties, fee structures, UI/UX design. The company offers free downloads to non-commercial users. An individual or a small group (of fewer than 10 people) can enjoy five free downloads each month and pay $6.99 per song for the sixth download and above. Large groups (of ten people or more) should pay $21.99 for each download.

[8] DIGILOG Authors, “A Nightmare for Musicians? AI Online Music Composer System – JukeDeck, DIGILOG, June 2, 2016, https://digilog.tw/posts/668 (last visited on January 2, 2019)

[9] Laird Studio, Let the Online Music Composer Jukedeck Produce Unique Background Music for Your Films or Games! March 8, 2016, https://www.laird.tw/2016/03/jukedeck-jukedeck-bgm.html (last visited on January 10, 2019)

[10] As above.

[11] Amper Music’s official website at https://www.ampermusic.com/(last visited on January 10, 2019)

[12] GlobeNewswire, Amper Music Raises $4M to Fuel Growth of Artificial Intelligence Music Composition Technology, March 22, 2018, https://globenewswire.com/news-release/2018/03/22/1444796/0/zh-hant/Amper-Music%E7%B1%8C%E8%B3%87400%E8%90%AC%E7%BE%8E%E5%85%83%E4%BB%A5%E6%8E%A8%E5%8B%95%E4%BA%BA%E5%B7%A5%E6%99%BA%E8%83%BD%E7%B7%A8%E6%9B%B2%E6%8A%80%E8%A1%93%E7%9A%84%E7%99%BC%E5%B1%95.html (last visited on January 10, 2019). This round was led by Horizons Ventures, with Two Sigma Ventures, Advancit Capital, Foundry Group and Kiwi Venture Partners. This brings the company's total investment to $9 million.

[13] GlobeNewswire, same as above

[14] Smart Piece of Wood, Free Online Composer Enabled by AI, Amper Music, March 1, 2017, Modern Musician,https://modernmusician.com/forums/index.php?threads/%E5%85%8D%E8%B2%BB%E7%B7%9A%E4%B8%8A%E5%B9%AB%E4%BD%A0%E4%BD%9C-%E7%B7%A8%E6%9B%B2%E7%9A%84%E4%BA%BA%E5%B7%A5%E6%99%BA%E8%83%BD%EF%BC%9Aamper-music.225650/ (last visited on January 10, 2019)

[15] GlobeNewswire, same as Note 12

[16] Fang Yung-Chuan, Neohumanism, National Academy for Educational Research, http://terms.naer.edu.tw/detail/1312151/(last visited on January 10, 2019). Neohumanism emerged in Europe in the 18th and 19th century, against rationalism and utilitarianism advocated by the enlightenment movement. Neohumanism argues that the value of things is not hinged on practicality. Rather, it stems from the things themselves. Humanity is precious not because of rationality, but resultant from emotional satisfaction in life. Cultures are originated by the spontaneous activities of humanity, on the basis of emotions and imaginations.

[17] Synopsis by books.com.tw, who sells online Xiaoice’s “Sunshine Misses Windows”, the first collection of poems generated by artificial intelligence in history, August 1, 2017, China Times Publishing Co. https://www.books.com.tw/products/0010759209 (last visited on January 13, 2019)

[18] Wong Shu-Ting, AI Talents in Taiwan Find Stage in China: NTU Students Participate in R&D That Empowers Microsoft’s Xiaoice to Write Poetry by Looking at Pictures, BusinessNext, June 6, 2017, https://www.bnext.com.tw/article/44784/ai-xiaoice-microsoft(last visited on January 10, 2019

[19] Synopsis by books.com.tw, same as Note 17

[20] The organizer did not provide handouts from the speakers. The summary was based on the author’s note.

[21]Lin Ke-Hung, “More Than Playing Chess. AI Writes Novels Too. AI Novel Passes Preliminary Screening for a Novel Award! Reading at Frontline, https://news.readmoo.com/2016/03/25/ai-fictions/(last visited on January 10, 2019)

[22] Ou Tzu-Jin, “2,3,5,7,11..?AI-written Novel in Japan Nominated for a Literary Award, April 7, 2016, The News Lens , https://www.thenewslens.com/article/38783(last visited on January 10, 2019)

[23] TechBang, AI Team in Japan Develops Robots That Write Short Stories and Participates in Literary Competitions, TechNews, March 28, 2016, http://technews.tw/2016/03/28/ai-robot-novel-creation/(last visited on January 10, 2019)

[24] Ou Tzu-Jin, same as Note 20

[25] TechBang, same as Note 21

[26] Lin Ke-Hung, same as Note 19

[27] The title of the forum was “What is News Now?”. It attracted over 300 journalists and media experts from the U.S. and Asia Pacific to discuss media phenomena today. Detailed agenda available at East West Centre’s official website at https://www.eastwestcenter.org/events/2018-international-media-conference-in-singapore(last visited on January 10, 2019)

[28] Jason Liu, “Robot Writer, Transformation of South China Morning Post, State Monitoring, International Media Conference Day 1, China, Medium, June 25, 2018, https://medium.com/@chihhsin.liu/%E5%AF%AB%E7%A8%BF%E6%A9%9F%E5%99%A8%E4%BA%BA-%E5%8D%97%E8%8F%AF%E6%97%A9%E5%A0%B1%E8%BD%89%E5%9E%8B-%E5%9C%8B%E5%AE%B6%E7%9B%A3%E6%8E%A7-%E5%9C%8B%E9%9A%9B%E5%AA%92%E9%AB%94%E6%9C%83%E8%AD%B0day1-%E4%B8%AD%E5%9C%8B-c9c20bd00d75(last visited on January 10, 2019)

[29] Jason Liu, same as above

[30] Jason Liu, same as above

[31] First Time Ever in the World!AI-Created Portrait, Sold at Christie's Auction for NT$13.34 Million, Liberty Times, October 26, 2018, http://news.ltn.com.tw/news/world/breakingnews/2592633(last visited on January 10, 2019)

[32] The selling price is 40x higher than the expected price. The buyer’s identity is unknown.
Chang Cheng-Yu, “First Time Ever! AI-Created Portrait Auctioned at Christie’s for NT$13.34 Million, October 26, 2018, LimitlessIQ,https://www.limitlessiq.com/news/post/view/id/7241/ (last visited on January 10, 2019)

[33] Lin Pei-Yin, Does the NT$10m Worth AI Portrait Have Intellectual Property?” Apple Daily, Real-Time Forum, November 29, 2018, https://tw.appledaily.com/new/realtime/20181129/1475302/(last visited on January 10, 2019)

[34] Jamie Beckett, What Are Generative and Discriminant Networks? Hear What Top Researchers Say, Nvidia, May 17, 2017, https://blogs.nvidia.com.tw/2017/05/generative-adversarial-network/(last visited on January 10, 2019)

[35] Jamie Beckett, same as above. Ian Goodfellow is currently a Google research scientist. He was a PhD candidate in the Université de Montréal when he came up with the idea of generative adversarial networks (GAN).

[36] Jamie Beckett, same as above

[37] Jamie Beckett, same as above

[38] Chang Cheng-Yu, same as Note 32

[39] Jamie Beckett, same as Note 34

[40] Video for the speech: GTC 2017: Big Bang of Modern AI (NVIDIA keynote part 4), link at https://www.youtube.com/watch?v=xQVWEmCvzoQ (last visited on January 10, 2019)

[41] Wu Chia-Zhen, AI-Generated Nude Portrait Beats Real People’s Works by Claiming the UK Art Award and Prize of NT$120,000, LimitlessIQ, October 15, 2018 https://www.limitlessiq.com/news/post/view/id/7070/(last visited on January 10, 2019)

[42] Jamie Beckett, same as Note 34

[43] Chang Cheng-Yu, same as Note 32

[44] Chang Cheng-Yu, same as Note 32

[45] The explanatory ruling by the Copyright Division, Intellectual Property Office, Ministry of Economic Affairs, Email 1070420, issued on April 20, 2018, https://www.tipo.gov.tw/ct.asp?ctNode=7448&mp=1&xItem=666643(last visited on January 2, 2019). The discussion was in response to the training outcome of voice recognition patterns based on analytics of the 1999 Citizen Hotline voice data.

[46] According to Article 10 of the Copyright Law, authors enjoy copyright at the time of the work completion. Article 33 stipulates that copyright for legal-person authors lasts 50 years after the first publication of the work concerned.

[47] Yeh Yun-Ching, Birth of New Type of Legal Right/Liability Entity ─ Possibility of Robots Owning Copyrights According to 2017 Proposal from European Parliament, IP Observer - Patent & Trademark News from NAIP Issue No. 190, July 26, 2017
http://www.naipo.com/Portals/1/web_tw/Knowledge_Center/Laws/IPNC_170726_0201.htm (last visited on January 2, 2019)

[48] C-5/08 Infopaq International A/S v. Danske Dagbaldes Forening.

[49] Andres Guadamuz, Artificial Intelligence and Copyright, WIPO MAGAZING, October 2017, https://www.wipo.int/wipo_magazine/en/2017/05/article_0003.html (last visited on January 19, 2019).

[50] The article indicates that “A work should be protected in “the sense that is the authors’ own intellectual creation. No other criteria shall be applied to determine its eligibility for protection”.

[51] Excerpt from the original legal article: in case of a literary, dramatic, musical or artistic work which is computer-generated, the author shall be taken to be the person by whom the arrangements necessary for the creation of the work are undertaken.

[52] Excerpt from the original legal article: generated by computer in circumstances such that there is no human author of the work.

[53] Andres Guadamuz, supra note 49.

[54] Id.

[55] Feist Publications v. Rural Telephone Service Company, Inc., 499 U.S. 340 (1991). “the fruits of intellectual labor that are founded in the creative powers of the mind.”

[56] Naruto v. Slater, 2016 U.S. Dist. (N.D. Cal. Jan. 28, 2016).

[57] The 2014 version of Article 313.2 provides a list of the examples not eligible for the U.S. Copyright Act protection. These include the works generated by the nature, animals or plants and the works purely generated by machines or machinery at random, without any creative inputs or intervention from humans. The examples given are photos taken by a monkey and murals painted by an elephant. The 2014 version establishes that works not created by humans are not eligible for copyright protection. The 2017 version takes a step further with more specific and straightforward wording.

[58] Copyright Act 503.03(a): Works-not originated by a human author.
In order to be entitled to copyright registration, a work must be the product of human authorship. Works produced by mechanical processes or random selection without any contribution by a human author are not registrable. Thus, a linoleum floor covering featuring a multicolored pebble design which was produced by a mechanical process in unrepeatable, random patterns, is not registrable. Similarly, a work owing its form to the forces of nature and lacking human authorship is not registrable; thus, for example, a piece of driftwood even if polished and mounted is not registrable.

[59] Andres Guadamuz, supra note 49.

[60] Lin Li-Chih, An Initial Examination of Copyright Disputes Concerning Artificial Intelligence —— Centered on the Author’s Identity, Intellectual Property Rights Journal, Volume 237, September 2019, pages 65-66

[61] The legislative rationale for Article 12 of the R.O.C. Copyright Act: The sponsor and the sponsored are typically in a more equal position for the works completed with sponsorship. It is different from the situation where the works are completed by an employee by using the hardware and software offered by the employer and receiving salaries from the employer. Therefore, the ownership of copyrights depends on the contract between the sponsor and the sponsored regarding the investment and sponsorship purposes. Unless otherwise specified by the contract, the sponsor typically provides funding because of his/her intention to use the works completed by the sponsored. Therefore, the intellectual property should belong to the sponsored.

[62] Lin Li-Chih, same as Note 60, pages 75-76. Further reference of the principle used in the U.S. system: Annemarie Bridy (2016), The Evolution of Authorship: Work Made by Code, Columbia Journal of Law, https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2836568. Also the same author (2012), Coding Creativity: Copyright and the Artificially Intelligent Author, Stanford Technology Law Review, https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1888622.

[63] Lin Li-Chih, same as Note 60, page 76

[64] Frank H Easterbrook, Cyberspace and the Law of the Horse, 1996 U. CHI. LEGAL F. 207.

[65] Please refer to State v. Loomis, 317 Wis. 2d 235 (2016).

Links
※Copyright Ownership for Outputs by Artificial Intelligence,STLI, https://stli.iii.org.tw/en/article-detail.aspx?no=86&tp=2&i=171&d=8194 (Date:2024/04/20)
Quote this paper
You may be interested
The Introduction to the Trade Secret Management System Standard

The Introduction to the Trade Secret Management System Standard 2024/02/06 The “Trade Secret Management System”, released by the Science & Technology Law Institute of Institute for Information Industry on March 1, 2023, is a standard to guide organizations developing a systematic trade secret management system in alignment with relevant regulations and their operation objectives. Its aim is to assist the organizations reducing the risks of trade secret leakage while improving organizational competitive advantages. The Trade Secret Management System standard provides a framework for organizations to design, implement, and continuously improve their trade secret management performance. As defined in Article 2 of the Trade Secrets Act, "trade secret" could be any method, technique, process, formula, program, design, or other information that may be used in the course of production, sales, or operations, meeting following requirements: 1. It is not known to persons generally involved in the information of this type; 2. It has economic value, actual or potential, due to its secretive nature; and 3. Its owner has taken reasonable measures to maintain its secrecy. The Trade Secret Management System standard comprises a total of 10 chapters. The following is a brief overview of each chapter: Chapter 1: This chapter indicates the standard is applicable to all organizations regardless of their types, sizes, and the products or services they provide. It mentions that the organization can determine their management approached to meet the requirements of the standard. Chapter 2: This chapter provides the definitions of specific terms used in the standard. Chapter 3: This chapter introduces the top management’s responsibility to ensure the establishment, continuous appropriateness, completeness, and effectiveness of the trade secret management system. Chapter 4: This chapter requires the organization to define the scope of its trade secrets and ensure the defined trade secrets can be identified. This chapter also requires organization set up the permission to restrict access to personnel who need to know or use the trade secrets. Chapter 5: This chapter introduces the organization shall control the use of trade secrets, including actions such as copying, destruction, etc. Additionally, organization shall preserve the records of the aforementioned use of trade secrets and detect if any abnormal usage exists. Chapter 6: This chapter discusses measures the organization shall take for internal personnel control. These measures include regular training on trade secret-related requirements, signing of confidentiality agreements, and various management actions the organization should take throughout the processes of personnel recruitment, employment, and departure. Chapter 7: This chapter demonstrates the organization’s management of environments, equipment and internet involving its trade secrets. It requires the implementation of access control measures for places where trade secrets are stored or processed. It also stipulates controls on the use of record media and devices which can access trade secrets, as well as controlling the transmission of trade secrets via network. Chapter 8: This chapter introduces the management measures the organization shall take when interacting with other parties. These measures include signing non-disclosure agreement (NDAs) with the party who will access trade secrets and requiring such party not to hold the trade secrets once the corporation ends. Chapter 9: This chapter introduces that the organization shall establish a trade secret dispute resolution procedure to prevent or mitigate damages to the organization caused by disputes. Chapter10: This chapter outlines the supervision and the improvement of the trade secret management system of the organization. Organizations can follow the standard to build their own trade secret management system based on the Plan-Do-Check-Act (PDCA) concept. The trade secret management system would include defining trade secrets to be managed, establishing protocols for the use of trade secrets, managing employees, controlling of internet, devices and environment related to trade secrets, regulating external activities, developing trade secret dispute resolution procedure, and regularly monitoring the effectiveness to improve trade secret management performance. This standard could serve as a benchmark for the organization or third parties to evaluate compliance with expected trade secret managements.

Discussion on the Formation of Taiwan’s Network of Intellectual Property Collaboration System in light of Japan’s Experience

Background Taiwan industries have been facing an increasing pressure from the competitive global market. To assist the Taiwan industries, the Government has approved the “National Intellectual Property Strategy Guideline” (the “Guideline”) on 17 October 2012. The Guideline stipulates six major strategies and twenty-seven relevant enforcement criteria in relation to intellectual property (“IP”). The six major strategies are as follows: (a) creation and utilization of high-value patents; (b) enforcing cultural integrity; (c) creation of high agricultural value; (d) support free flow of IP for academics; (e) support system of IP trade flows and protection; and (f) develop highly qualified personnel in IP. Under the “innovation of high-value patents” strategy, the relevant enforcement criterion, being “establishing academia-industry collaborative system for IP management”, is to support the Taiwan’s current and future technology development program on R&D planning, IP management and technology commercialization. In other words, this enforcement criterion can greatly improve the ambiguity and inadequacy of Taiwan’s research infrastructure which have caused inefficient research operation. Furthermore, this enforcement criterion can also improve network collaboration between organizations on IP management, allowing more efficient process for managing IP and thus achieving the purpose of “creation and utilization of high-value patent”. In light of the above, this article studies Japan’s practice on integrating the IP network resources and improving their IP management under the University Network IP Advisors Program (“IP Advisors Program”). University Network IP Advisors Framework Outline A. Policy background, goals and methodology National Center for Industrial Property Information and Training (“INPIT”) initiated the IP Advisors Program and commissioned Japan Institute for Promoting Invention and Innovation (“JIII”) to implement and carry out the new policy in year 2011. Prior to the implementation of the new policy by JIII, INPIT has assisted with establishing proper IP management systems for more than 60 Japanese universities by dispatching IP experts and advisors (“IP Advisors”) to each of the universities during 2002 to March 2011. After the implementation of the initial policy, review has suggested that by expanding the network collaboration, such as establishing intervarsity IP information sharing system within their university networks, the universities can fully aware of and identify technologies that were created by them and are beneficial to the industrial sector. In addition, expanding the network collaboration can also help the universities to quickly develop mechanisms that will enable them properly protect and utilize their acquired IP rights. Accordingly, after 2011, the initial policy has expanded its scope and became the current IP Advisors Program. Japan is expected to improve its nation’s ability to innovate and create new technologies. To attain this goal, Japan has identified that the basis for industry-academia-government R&D consortiums is through obtaining information on universities’ and other academic organizations’ research technologies and IP so that Japan can appropriately place these universities in the appropriate wide-area network. This will allow the universities within the wide-area network to establish IP management policy to properly protect and utilize their IP rights. The current IP Advisors Program is conducted through application from the universities in established wide-area network to JIII. Upon review of the application, JIII will then dispatch the IP Advisor to the applicant university of that wide-area network. IP Advisors not only can provide solutions to general IP related problems, they can also provide professional advice and service on how to establish and operate IP management system for all the universities within the wide-area network. B. IP advisors’ role In principle, IP Advisors are stationed to the Administrative School or Major Supporting School within the wide-area network. IP Advisors can be dispatched to other member schools (“Member Schools”) or provide telephone inquiry service by answering IP related questions. In other words, IP Advisors are not stationed in any Member Schools to manage their IP management affairs, rather, IP Advisors advise or instruct the IP managers of the Member Schools on how to establish and utilize IP management system based on the Member School’s infrastructure. The contents of IP Advisors roles listed are as follows: (a) Assist with activities within the wide-area network. 1. assist with establishing information sharing system between universities within the wide-area network; 2. assist with solving region-based or technology-based IP problems; 3. provide inquiry service for planning activities within wide-area network; and 4. provide inquiry service on other wide-area networks activities planning. (b) Provide services for Member Schools (Type 1) with undeveloped IP management system. 1. investigate or analyze the available IP management system in the Member Schools; 2. assist with drafting a plan to establish IP management system (through an assisting role) and provide instructions or advices accordingly; 3. direct personnel training (i.e. provide education on invention evaluation, assessment on applying for patent and contracts); 4. advocate different regimes of IP; and 5. collect relevant information on new developing technologies. (c) Provide services for Member Schools (Type 1) with developed IP management system 1. investigate or analyze the available IP management system in the Member Schools; 2. provide advices or instructions on the application of IP management department; 3. provide advices or instructions for solving IP management problems; 4. direct personnel training (i.e. provide education on invention evaluation, assessment on applying for patent and contracts); 5. advocate different regimes of IP; and 6. gather relevant information on new developing technologies. (d) Provide services for Member Schools (Type 2) 1.Share and exchange information through network conference. C. Recruitment process and criteria JIII adopts an open recruitment process without a set number of allocated IP Advisor positions. Working location is based in Member Schools of wide-area network in Japan. In principle, IP Advisors are stationed in Administrative Schools or Major Supporting Schools within the wide-area network and can only provide telephone inquiry service or temporary assignment for assistance to the Member Schools (Type 1). However, it is noted that IP Advisors do not belong to any specific university within the wide-area network, they are employed by JIII under an exclusive contract. Based on 2013 example, IP Advisors’ employment contract started from 1 April 2013 and expires on 31 March 2014. IP Advisors’ salary and travelling expenses are paid by JIII. However, expenses for Members School (Type 1) establishing a working environment and any other disbursements should be paid by the Member School (Type 1). Furthermore, under the implementation of the current policy with respect to IP Advisors who are unable to comply with the new criteria, previous contract is considered as a non-periodical contract for the IP Advisors to continue to station in the university. However, if IP Advisor is stationed in a specific university, it must be limited to a maximum of 3 years. Due to the IP Advisors’ work, they must comply with the privacy law and keep any obtained information confidential. D. IP advisors’ qualification 1. Require a high level of professional knowledge on IP management system IP Advisor candidates must have relevant experience working in the industry with IP management system department, operation planning department, R&D department (collectively refer as “IP Management Related Departments”). 2. Have relevant experience in directing trainings in IP Management Related Departments IP Advisor candidates must have the ability to train personnel in IP Management. 3. Can provide IP strategies based on the demands. IP Advisor candidates must have the ability to plan and utilize IP strategies to achieve optimal outcomes in R&D base on the circumstances and needs of different universities. 4. Have referral from the supervisors. IP Advisor candidates who are currently employed must be able to obtain a referral from their current positions’ supervisor, IP manager or personnel from higher up. IP Advisor candidates who are current unemployed must be able to obtain a referral from their previous employment. E. IP advisors’ selection process Based on JIII’s “University Network IP Advisors Adopted Standards” (“Adopted Standards”), IP Advisors are selected first through written application followed by interview. After a comprehensive assessment, all qualified candidates will be compared based on their compatibility of the essential criteria and other non-essential criteria, and finally selecting the most suitable candidate for the wide-area network. F. Application criteria for IP advisors services 1.Common requirements for Member Schools of wide-area network (a) must be an university or educational organization pursuant to the School Education Act (No. 26 of 1947) and must be able to conduct research and have set number of entry students and graduates per year;and (b) university must have developed IP related technology or design. 2. Criteria for wide-area network (a) Must have minimum of 3 and maximum of 8 Member Schools (Type 1) and 10 or less Member Schools (Type 2) combined, and have Member School (Type 1) entering wide-area network; (b) Must clearly state the nature of network as region-based or technology-based; (c) With Administrative School as base, the network must have collaborative system to plan network events; (d) Administrative School must be able to propose and carry out network events which can benefit Member Schools (Type 1) and the society through annual business plan. (e) Must be capable to provide indirect assistance to IP Advisors who are limited by time and region such that there is a proper environment to conduct wide-area network events. 3. Entry requirement for Member Schools (Type 1) (a) Must include in the university’s policy that they will become a Member School (Type 1) in the network and provide assistance to IP Advisors accordingly; (b) IP management and IP utilization system must be clearly implemented; (c) must clearly state the scope of responsibility in relation to the collaboration with the Administration School; (d) Propose and carry out an annual business plan which can improve IP management and utilization system to a certain level on their own; and (e) Has the facility to allow IP Advisors to provide assistance and service. 4. Entry requirement for Member Schools (Type 2) (a) Must include in the university’s policy that they will become a Member School (Type 2); (b) Same as paragraph F(3)(b) in this article; and (c) Same as paragraph F(3)(c) in this article. G. Current status quo The original aim was to establish the initial IP Advisors Program to assist with university’s IP management system by dispatching IP Advisors to 60 and more universities from 2002 to March 2011. The current wide-area university network IP Advisors Program started on April 2011. Since then, JIII has dispatched IP Advisors to 8 wide-area networks. In addition, IP Advisors have also been dispatched to wide-area network with art and design colleges/universities. During year 2011, IP Advisors has achieved and completed several IP management policies as follows: 7 IP policies, 3 academia-industry collaboration policies, 2 conflicting interest policies and 2 collaborative research policies etc. Recommendation This article is based on a legal perspective view point, taking Japan’s IP Advisors Program as a reference to provide the following recommendations on the topic of network for academia-industry collaboration in Taiwan. A. Separate levels of collaboration base on needs Using Japan’s policy as an example, universities within the wide-area network require different content of services tailored to each university individually, and the universities can be categorized into two types of member schools based to the content of services. Accordingly, it is recommended that the Government should consider a similar approach to the Japan’s policy when establishing IP management alliance and forming network of IP management system. For instance, design different levels of content and collaboration, and thus expand collaboration targets to gradually include major legal research institute, technology transfer centre for universities, and IP services in northern, center and southern area of Taiwan. This will allow collaboration of these organizations to coordinate IP programs such as IP northern, application and utilization with ease. B. Emphasis on the idea of establishing and maintaining IP basic facilities Based on Japan’s past experience, it is recommended that before expanding IP Advisors related policy to solve regional IP problems, universities must first be assisted to improve their own IP management system, which has taken Japan almost 10 years to improve their universities’ IP management system. From the current IP management system policy, it can be observed that the establishment of IP management system has a certain relevant importance. Furthermore, there is an emphasis on IP Advisors’ experience in training IP managers. Accordingly, it is recommended that the Government in future planning of network IP collaborate system should set short term and long term goal flexibly, such that the basic IP facilities within the members of the network can develop continuously. For example, short term goal for a legal research institute can be growing to a certain size for it to adjust or implement IP related policies. As for longer term goal, it can be a requirement to set up a unit or department to operate and manage IP. C. Expanding the definition of ‘Networks” Taiwan and Japan are high populated country on an island with limited land. Thus, if Taiwan and Japan insist on maintaining the geographic position for networking concept and adopting such concept on the regional economics for cluster effects, then it is difficult for Taiwan and Japan to compete with American Silicon Valley or other overseas universities. In light of the above, on establishing network of IP collaborative system, the Government should take reference from Japan’s practice in 2012 and combine same industry such as medicine industry or art industry in the definition of network. This will accelerate the integration of IP experience, information, and operation management capability within the network of same industry. Conclusion In conclusion, in order to establish academia-industry IP collaboration system and efficiently improve Taiwan’s IP management system in research organizations, first must focus on various policies tailored for different levels of collaboration so that it can be integrated and expand the integration of IP resources such that there is a good foundation to develop IP basic facilities. Following the establishment of good IP foundation, it can then be further develop to more complex IP programs such as IP landscape, planning and strategizing etc.

Yearly Update on the Progress of the TIPS Project – summary of a research report on corporate investors’ view on introducing a corporate IP disclosure framework

Chien-Shan Chiu Background In the era where inventions drive the economy, the ability to create, capture and protect these inventive ideas has become vital for a corporation to stay competitive and sustain profit growth. Various government policies have been implemented in order to stimulate inventions and to strengthen the ability to protect these inventions through effective use of intellectual property (“IP”) rights. For the past few years, the TIPS (Taiwan Intellectual Property Management System) project has been promoted extensively aiming to increase public awareness towards IP rights and to assist local companies to establish a systematic and comprehensive IP management system. Over the years, the TIPS project has received wide recognition and positive feedbacks, and many TIPS-implemented companies are ready for the next challenges. After an extensive research, the project proposes to follow the international trend of encouraging companies to make better and more disclosure of intangible assets that are not often shown in the traditional financial statements1 . Local companies with effective IP management system and strategy are encouraged to compile an “Intellectual Property Management Report” summarizing its business, R&D and IP management strategies as well as their accumulated IP assets. In order to compile an Intellectual Property Management Report, a company is advised to re-identify its intellectual property, re-think about its strength and weakness in every aspect and where necessary, the company may also need to re-conduct a market, technology trend or competitor’s analysis, through which it is believed that a better and more effective IP strategy will be re-formulated. Formulating a well-planned corporate strategy that takes into account various IP issues is one of the main reasons for introducing the corporate IP disclosure framework. Promoting the disclosure of IP-related information so that the management efforts, visions and true capabilities of a corporation can be fully disclosed and recognized is the second major reasons for introducing the corporate IP disclosure framework. This essay begins with a brief update on the yearly progress of the TIPS project, follows by a summary of the research report on corporate investors’ view on initiating a framework for enhancing disclosure of corporate IP-related information. The research report contains the result of a survey conducted between April and June this year (year 2009), consisting questions to uncover local investors’ view and attitudes towards corporate IP, and to identify kinds of IP-related information required when making an investment decision as well as to find out to what extend local investors would support the government’s initiative on promoting a corporate IP disclosure framework. Update on the Yearly Progress of the TIPS Project In order to facilitate the promotion of TIPS, several supplementary services have been introduced (fees and expenses are fully or partially subsidized by the government this year) : (1) Free On-Line Self-Assessment Tool; (2) On-Site Diagnostic and Consulting Service (selected companies were fully subsidized); (3) “Demonstrative” Model Companies (selected companies were partially subsidized); (4) IP Management Courses (partially subsidized); (5) On-Site Auditing (for the Conformance of TIPS requirements) and issuing of the TIPS Compliance Certification (fully subsidized) . To the end of 2009, 401enterprises have completed the on-line self-assessment questions; 93 companies have received on-site diagnostic and consultation services; 847 persons have taken the IP management courses; 64 enterprises have successfully obtained the certificates for the compliance of TIPS and more than 299 enterprises have either completed or in the middle of implementing TIPS. Summary of the Research Report on Corporate Investor s’ View on Introducing a Corporate IP Disclosure Framework Even though it is clear that the idea of encouraging corporations to disclose non-financial information has started few decades ago in Europe and are currently being vigorously promoted by many major countries, we believe that in order to facilitate smooth promotion of the new IP disclosure framework, it is important to find out the local investors’ views and attitudes towards IP and to know how investors see the role of IP can play in a local corporation. Hence a survey was conducted at the initial stage of preparing the new corporate IP disclosure framework in Taiwan. The survey was sent via both mails and emails to 357 corporations, including venture capital firms; trust, investment consulting or management firms; security corporations, financial institutions and banks. More than one set of survey questionnaires could be distributed in one corporation to be filled by investors/analysts that are specialized in investing different industrial sectors. As a result, a total of 495 set of questionnaires were distributed.. Basic Data The survey was conducted between April to June 2009. At the end of June, a total of 150 investors/analysts responded which equals to a 33% response rate. Most of the survey respondents specialized in investing in various industrial sectors which include: semi-conductor; telecommunication; electronic components; 3C products; IT; optical; biotechnology; pharmaceuticals; new energy resources; media; creative and culture and traditional manufacturing industries. Around 50% of the survey respondents have more than 5 years’ experience in investment; among them, 23% of the survey respondents have more than 10 years’ investment experience. Investors recognize the importance of IP A remarkable 94% of the survey respondents recognized that the ability to create, protect, manage and exploit IP has become an essential element for a company to stay competitive and sustain growth in today’s market environment. 88% of the survey respondents believe that companies with more or better IP assets are more likely to generate profits and 91% believe that such companies are more likely to survive in this ever-increasing competitive environment. Yet, 94% of the survey respondents agreed that not only a company should actively create IP assets, but the ability to exploit and thus extract value from the accumulated IP assets is what makes a company stand out among the others. Taking a step further, the survey result reveals that the respondent investors believe a company with effective and well-planned IP strategy is likely to: – Enhance its market competitiveness (84%); – Raise its overall corporate value (71%); – Maintain its market position (55%); – Increase its profitability (32%); – Affect its share price (30%); – Assist investors in evaluating such company’s managerial ability and performance (29%) as well as evaluating its future growth potential (28%). IP-related information influences investors’ investment decisions Given that most investors see the ability to create, manage and exploit IP assets as well as having a well-planned IP strategy are crucial for the survival of a company, 82% of the survey respondents indicate that IP-related information has been considered when making an investment decision. Furthermore, 85% of the survey respondents think that they will place greater emphasis on IP in assessing companies in the future. Indicators that used to assess/evaluate a company Most often used IP-related indicators identified by the survey respondents when making investment decisions are: – Core technology and its market competitiveness (77%) – Research ability (experience and achievement) (73%) – IP protection and management measures (41%) – IP strategy (align with overall corporate strategy and market/technology characteristics) (40%) – Ability to fully utilize self-owned IP assets (38%) – R&D expenditure and investment (35%) – No. of IP assets (35%) – Time taken for competing products to enter into the market (33%) – Cost of maintaining IP assets (19%) Ratio of intangible assets as to the overall corporate value (19%) : 20% of the survey respondents indicated that they have turned down investment in the past for inadequate IP awareness of the target companies. List of local companies with good and effective IP strategy The survey respondents were asked to name local Taiwanese companies which in their mind have most effective and sound IP strategy. Taiwan Semiconductor Manufacturing Company (TSMC), Foxconn, United Microelectrc (UMC), HTC, Acer are the top 5 most named companies given by the survey respondents. Having good quality of patents (such as essential or new technology patents); detailed and complete patent map; sound IP strategy; brand and professional IP/legal department are cited as the reasons that impress these investors. Inadequacy of public available IP-related information While most investors acknowledge the importance of IP and take into account various IP-related indicators when making investment decisions, 76% of the survey respondents expressed that currently, the amount of IP-related information disclosed by companies are not sufficient for them to make an informed investment decision. When a question asking the survey respondents to identify the channels by which they obtained their desired IP-related information, the results were quite spread out. 45% of the survey respondents relied on asking the top managers directly; 43% relied on annual report; media and news (35%); website (34%); industrial journals (25%); competitors (15%) and other private channels (15%). It appears that various sources were used but no particular source provides sufficient information. Indeed, a remarkable 91% of the survey respondents believe that if there are more channels provided for corporations to disclose their internal IP information, more accurate assessment of the corporate value can be made. Support government’s initiative of promoting IP reporting framework Further, 73% of the survey respondents expressed their willingness to support the government’ s initiative of encouraging local companies to disclose their IP-related information. In relation to the initiation and promotion of the corporate IP disclosure framework, 64% of the survey respondents responded that it would be better to adopt a voluntarily disclosure policy and decide whether to switch to mandatory disclosure later; 22% think that only a voluntarily disclosure policy should be adopted followed by 14% of the survey respondents who believe that the government should adopt a mandatory disclosure policy from the start. When the survey respondents were asked to provide suggestions to facilitate the promotion of the corporate IP disclosure framework, the following suggestions were picked by the survey respondents: – Provide valuation tools to assist investors in assessing and analyzing IP related information (40%); – a central platform to collect and display all the complied IP management reports (21%); – lists of compulsory items to be disclosed in the report (21%); and – regulate the frequency of updating the contents of the report (15%). Conclusion Based on the results of the survey, we can conclude that the local investors’ view and attitude towards IP are similar to those in overseas. Majority of the investors (> 90%) see IP as valuable tools that could assist companies to create profits and sustain growth in today’s competitive market. While most of the investors (82%) have taken into account relevant IP information when making investment decisions, 76% of the survey respondents expressed that the amount of corporate IP-related information disclosed by companies are insufficient for them to make informed investment decisions. This is an important message that local companies should pay particular attention. It is hoped that through the introduction of the corporate IP disclosure framework, more adequate corporate IP information will be disclosed to assist investors in making better and accurate investment decisions. Consequently, a company’s true capabilities, managerial efforts and the intangible assets created upon can thus be fully appreciated and reflected on its market value. 1 Various national and institutional initiatives addressing the disclosure of corporate intellectual assets are currently being promoted vigorously at the international level such as Japan’s “IA based Management Report, (METI)”; Denmark’s “Intellectual Capital Statement (MSTI)”; European Union’s “Guidelines on Intangibles, MERITUM project”; U.S.’s “EBR 2.0 (Enhance Business Reporting Consortium)”; and The World Intellectual Capital/Assets Initiative (WICI) is currently working on developing a voluntary global framework for measuring and reporting corporate performance.

Intellectual Property Management Standards of Taiwan: Development and the Status Quo

Oct/30/2006 I. Intellectual Property Management among Taiwanese Firms: Status Quo and Problems 1. Current status of management of intellectual properties among Taiwan-based enterprises Way from Taiwan's participation into World Trade Organization (WTO) effective January 1st, 2002, huge impacts have been brought upon our domestic enterprises, since, apart from competition coming from giant international manufacturers, they have to meet challenges coming from elsewhere in the world. Besides, the arrival of a time when knowledge became an integral part of the economy in which we find ourselves, profits realizable to an enterprise depends largely on the control of market and on R&D of key technology, such that intellectual property alone is a sure key to the earning of profits and growth of modern enterprises to which admirable economical worth may be created commensurably. Intellectual properties owned by the enterprise should make it such that corporate know-how is thereby transformed into marketable commodities to stand in a viable position among competitors. An overall observation of the management system in our domestic enterprises or organizations indicated that management of intellectual properties is scattered among Education or Training units, R&D units, Legal Service Units, rather than detitle with collectively or through flow control. Management of intellectual property as such by and large would fail to produce immediate or admirable benefits to the enterprise, serving at most to avoid occasioning of losses, in fact and indeed it is but through strategic exploitation of an intellectual property management system would it be possible to pursue a share of the market or to realize licensed proceeds. 2. Problems facing domestic enterprises with respect to management of intellectual properties Renowned firms based in Taiwan and active in the prosecution of management of intellectual properties do so primarily because their executive realized how grave a loss could be incurred to corporate assets and corporate operation due to infringement charges, Taking the infringement charge by an alien firm against a certain domestic firm early January, 2006, for example, to reach a compromise a payment amounting to approx, US$85,000,000 was necessary, and that claiming a share of 10% of the Company's annual revenue, that lesson has taught the Company to pour mass resources in the establishment and execution of intellectual management system. In the Knowledge-based Economy of today, no top management of any enterprise or organization would deny the importance of the management of intellectual properties, understanding alone, however, would not suffice to push the Company getting to work forthwith, because the buildup of an intellectual property management system will of necessity incur a lot of costs, seeing the want of possibility to obtain any investment return all at once, most enterprises or organizations would have their intellectual property management systems designed essential to prevent infringement upon other part's intellectual properties. Notwithstanding that our local manufacturers have gradually come to their senses as regards the importance of intellectual properties, larger scale ones, confronted with cutthroat pricing competition in the global market, is largely harassed with litigation on infringement of intellectual properties; whereas the medium and small businesses, owing to inadequate manpower and funding resources, were largely unable to go for in-depth development of intellectual properties, still, a key to consistent development of our local industries lies in a sound planning of the intellectual property management system, amid the current of the Knowledge-based Economy featuring the 2lst century, the creation and protection of intellectual property rights is a critical index to the upholding of our national competition. So top issues on the agenda for competent authorities in charge of industrial sectors include; assisting local businesses or organizations to implement systematic management of intellectual properties, to retain, accumulate intellectual properties produced by its employees and convert same into intellectual assets, to thereby upgrade their competitive margin, this chain of efforts must be formed in a grand cycle encompassing all the staff, to stand firm and last. II. Formation and orientation of Taiwan's standards on management of intellectual properties 1. The origin of Taiwan's regulation of the standards on management of intellectual properties Impacts brought to local industries in the wake of Taiwan's participation in WTO have taught both the Administration and the Industry to realize, in the long run, that protection of intellectual strength and exploitation of intangible assets can redound much to build up competitive margin, Now that our nationwide economic and trade activities have entered global, international scale, the number one issue is to emphasize protection of intellectual properties if only it accounts to move further into transnational frontier and let our national competition be felt there, what's more, protection of intellectual properties is an obligation laden upon all the member states of WTO, and that consistent with our national interests Yet protection of intellectual properties is a comprehensive, integrally interrelated task demanding nationwide consensus, calling for unreserved cooperation across governmental, civil, administrative and legislative channels, if only any effect to be expected accounts, yes indeed it is but through an environment propitious to the safeguarding of intellectual properties can R&D tank go deeply rooted in this country, therein lies rightly a sure key to permanent survival of our nation at large. The buildup of a convenient, effective and low-cost intellectual property management system in lieu of discrete controls seen traditionally in our local enterprises or organizations, will help the enterprises to effectively control and safeguard their intellectual properties, and that sub serving to protect their proper interests, reduce risks of theft, and restraint from encroaching upon the intellectual properties of third parties, besides, roytitleies through licensing arrangement will redound to corporate revenue, that paralleled with boosted marketing competition, intellectual properties protected and exploited as such will mark a resounding foundation for lasting development in our times where know-how alone is the king. The foreground being recited above, in 2003 and 2004 the Intellectual Property Office, a department of the Ministry of Economic Affairs (IPO for short), appointed Science and Technology Law Center, a unit under Institute for Information Industry (STLC for short), to establish an intellectual property management system suitable for local enterprises (Then known as “Intellectual Property Management System Standard”, in the hope that by the implementation of standardized intellectual property management procedure and promotion of same, local enterprises may remain less likely to getting involved in infringement charges, among other benefits foreseeable with exploitation of properly owned intellectual property rights. 2. Orientation of Taiwan's intellectual rights standards On December 9, 2004, the Ministry of Economic Affairs held a Conference on “Deliberation on the instituting and promotion of standards for the management of intellectual properties of Taiwan”, whereat a resolution was reached to work for Taiwan Intellectual Property Management System basing on the Intellectual Property Management System Standard proposed by STLC under trust for Intellectual Property Office, eventually it is hoped that through national standard certifying processing said Intellectual Property Management System Standard be instituted as our National Standard, to build up a nationally acknowledged credibility. Enterprises would then be encouraged to introduce for themselves a certifying mark once entitled through certification, and efforts will follow to see that the Intellectual Property Protection System be instilled in day-to-day realities, the whole system would by then be promoted internationally so that the image of our nation as an active protector of intellectual properties will one day be known to the world at large. However, as it will take years to have a national standard institutionalized, moreover, the enterprises at large are not sufficiently informed with the notion of the management of intellectual properties, the first step might well be to build up an Intellectual Property Management System Rating Scheme, to be followed with specification of supplemental procedures, and the same on completion, be recommended to the industry circle, and progression to applying for national standard would begin only if extensive consensus is obtained in the first place, paralleled with correlation with international realities, After the task was transferred to the Industrial Development Bureau of the Ministry of Economic Affairs (IDB for short), in 2005, it was reoriented to the positioning of industrial specification, that anyway helps local enterprises or organizations to build up a wholesome intellectual property management system. To adapt to industrial convention respecting specifications, the Intellectual Property Management System deliberate herein is named “Taiwan Intellectual Property Management System” (TIPS for short). The TIPS which is in the charge of the IDB is indicated for autonomous introduction by individual enterprises or organizations, in the hope that a systematic model for the management of intellectual properties would help correlate existent hardware facilities with ad hoc Intellectual Property Management so that a convenient, effective and low-cost management system be easier founded for the enterprise or organization concerned, in place of traditional trivial, random management practices 3. Process of formation of Taiwan intellectual property management standards While the establishment of Intellectual Property Management Standard was still in progress for the STLC, there was already lots of matured management standard system among international communities for consultation, including, for example, the ISO Quality Management System. So eventually in 2003, 2004, the Intellectual Bureau encrusted the STLC to analyze the ISO9001:2000 Quality Management System in terms of its spirits and structures, and to look into the possibilities for combination with Intellectual Property Management as well, so that, in the affirmative case, what needs be done is to work out an Intellectual Property Management Standard to which all kinds of business and industry may fit, and that will help to achieve procedural flow, efficiency and standardization all at the same time. The ISO9001:2000 Quality Management System is a standard established by ISO (International Organization for Standardization), and which is currently a Quality Management System running around the world. In the year 2000 ISO combined through amendments of ISO9001, ISO9002 and ISO9003 published titleogether in 1994, to form ISO 9001:2000. ISO 9001:2000 since replaces all the previous standards and stands as the only and sole standard for certification, featuring emphasis on the consolidated functioning of Quality Management Systems and the target for comprehensive Quality Management. The ISO 9001:2000 based the entire system structure on PDCA Management Cycle (Plan-Do-Check-Action), way up from the Management Level, setting corporate quality policies and targets as dictated by customer needs, whereby planning of corporate resources is decisive in production and service outputs, what with measuring and monitor mechanism to persistently improve functioning of the entire quality system. With respect to various operational procedures in an enterprise or organization, a four-step PDCA comprising: (1) Plan, whereby quality policy is formulated; (2) Do; (3) Check, as to the outcome of what has been done; and (4) Action, corrective and preventive by nature; will intervene to help resolve problems as they arise and hence, achieve the targets. Abiding by aforementioned PDCA model, the STLC will firstly incorporate the Intellectual Property Management Standard into ISO 9001:2000 Quality Control System, thence consult the ISO system structure to split into 0 to 8 units: General Description, Scope of Application, Reference Standards, Definitions, Intellectual Property Management System, Management Commitment, Resource Management, Procurement, of Intellectual Proprieties, efforts as such should help the enterprises to promptly set up hard environments necessary to the management of corporate intellectual properties, and make the STLC easier in lending a hand to facilitate substantive functioning of corporate intellectual property management systems. Intellectual Property Management Standards incorporated to ISO system will prove more structurally effective, and help the enterprise to rapidly lay a foundation for the management of their intellectual properties, so that hopefully they may more effectively manage, make use of their intellectual properties, whereby to fortify their competitive margin, so that in the long run the overall international competitive margin of our industries is upgraded. A common goal for the design and setup of intellectual property, management standards lies in searching for the maximum possible assent from the industrial society so that an auditing or certification platform be created to benefit the intellectual property management system that is working for any enterprise or organization in this country, in order for such systems one by one will necessarily conform to prescribed standards, minimum requirements from given organizations or stipulated in statutes inclusive, not to mention the ultimate goal of better protection and exploitation of intellectual properties, in a lawful and satisfying manner. However, as yet no consensus has been reached as regards the establishment of a national standard respecting management of intellectual properties, yet there is still a need for management of intellectual property rights among local enterprises or organizations, to offer the utmost assistance possible to them all, the Ministry of Economic Affairs has taken the initiative to revise what was once Intellectual Property Management Standard into Intellectual Property Management Specifications, and such is positioned as an industrial specification. By instructive posture, subjects considered suitable to accept said Intellectual Property Management Specifications include all kinds of organizations irrespective of their category, scale, products or services offered. Even units or ad hoc groups in a given organization may qualify for inclusion, including, for example, a company in its entirety, or a specific division of that company, a laboratory or production program. 4. Anticipated Benefits That the IDB is sparing no effort in the preparation of Intellectual Property Management Specifications is underlined with multiple objects, to offer a unified structure for the management of measurable intellectual properties, to help enterprises simplify their procedures of management of intellectual properties, to enlighten the object enterprises or organizations with the understanding and what to expect from an Intellectual Property Management System. If only management of intellectual properties is incorporated into routine operation of an enterprise whatsoever, and that concept spread afar internationally, that would certainly help to build our national image as a country that is brave enough to initiate protection of intellectual properties. In the mean while, with ever increasing demand for the setup of intellectual property management systems, a reality as such in the foreground, a good chance is struck to enlarge the service market or intellectual property management services emanation from Taiwan, and that sub serving to the development of know-how service industry, a surplus for the service industry by any rate. An enterprise or organization by the establishment of intellectual property management system may expect the following benefits; Increased competitive strength and creation of additional value. Once an Intellectual Property Management System is there, the facilitation to maximize intellectual properties will redound to corporate competition, while help creation more of additional value. Taking our sports implements industry or the vehicle lights manufacturers in Taichung area for example, intellectual properties are present in the products and in the production process as well, to make available diversified options for the purchasing parties, thereby greatly enhancing additional value to the products, interpreted to mean more profits realizable over pure OEMs. Avoidance of vicious cycle, increased will to placement of purchasing order. If only optimum use is made of intellectual properties such that they are represented in the products, in the process or even in the technology itself, Taiwanese manufacturers who are basically OEMs may avoid the painful dilemma of vicious competition, and may even make it may avoid the painful dilemma of vicious competition, and cay even make it for overseas buyers to be core willing to place orders, Taking again as an example a TIPS induced manufacturer, 2005, the Universal Scientific Industrial Co., Ltd., after the USI has built internal intellectual property management system pursuant to TIPS specifications, alien clients on the point of placing orders may very soon be adequately informed with the model the USI takes respecting their management of intellectual properties, satisfied that the products being purchased are largely safe from infringement of other's proprietary rights, the alien buyer may be willing to place more and greater orders. Reduced management costs, creation of greater profits. Most Taiwan-based medium and small businesses are far from being able to input mass manpower or material resources simply to build up systematically structured intellectual property management system. The meaning of introducing TIPS specifications lies simply in the close embodiment of existent hard equipments with management of intellectual properties for any intending enterprise whatsoever, so that a full set of convenient, effective and low-cost management may come into being in lieu of random and discrete management practice which has been the case for years or even for generations. Obvious benefits with such an arrangement include protection of proper interests, preclusion of encroachment upon the proprietary rights of third parties, and perhaps the possibility of granting licensing arrangements to earn roytitleies for the company. III. Implementation of Taiwan Intellectual Property Management Standards: History and Current Situation From 2006, the way to promoting the Intellectual Property Management System is prosecuted in the form of specifications submitted to industries in the hope that industries would establish their own intellectual property management systems using such specifications, through systematic flows, efforts as such should help to boost corporate competition, and the keynote has therefore shifted from once where it was, that was, verifying if a given industry had introduced and honestly follow specified Intellectual Property Management System against given standards. What follows below is a phase-wise account of the history of implementation of Taiwan's Intellectual Property Management Standards: 1. Trial Phase Emphasis placed on Intellectual Properties following Taiwan participation in WTO has driven the IPO to appoint the STLC to formulate a full set of standards for the management of intellectual properties based on a structure and morale embodying ISO 9001:2000 Quality Control Systems, and the same intended for trial introduction into local industries in addition to personnel training and promotion purposes. In this phase important businesses on the agenda include: To launch the institution, the intellectual property management standard will be firstly introduced into three manufacturers beginning in 2004, whereby manufacturer's comments collected in the counseling process will turn to account for reference for amendment considerations respecting said Intellectual Property Management Standard, with outcome of the introduction serving as a model for other manufacturers. As regards promotion, suitable promotion scheme will be put into effect to introduce Intellectual property Management Standard to enterprises or organizations to which predecessor experiences will be supplied as well, whose newly gained experiences would be shared among other enterprises for reference in Outcome Sharing Party activities. As regards counseling input, there have been 3 manufacturers in 2004, Asia Optical Co., Inc., Cheng Uei (Foxlink) Precision Industry Co., Ltd. and HiTRUST Inc., receiving trial introduction of Intellectual Property Management Standard whereby each has had their own Intellectual Property Management System established. As regards personnel training, seeds have been chosen who, after having received training on relevant curriculums, betook themselves to assisting enterprises or organizations introducing Intellectual Property Management Standards, this in turn benefits the seeds with on-job experiences such that they turned out better prepared to demonstrate counseling, assessment capabilities in the face of future promotion tasks, As regards R&D tasks, consistent brainstorming for the working of supplemental or operating procedures necessary for the promotion of Intellectual Property Management Standards, prepping up comprehensive implementation programs based on experiences accumulated over practical and personal involvements. 2. Demonstrative Introduction Phase Since promotion task is passed to the IDB in 2005, efforts to institute Intellectual Property Management Standard switched to introducing Intellectual Property Management Specifications where the top concern is to be helpful for the industries concerned. On the basis of as is Intellectual Property Management Specifications and prep up verification mechanism; Seen in the result of institutional promotion, out of stipulations and regulations conditioning the promotion of intellectual property management system that is persistently deliberated by the STLC on behalf of the IDB, a total of 11 documents nave been released pertinent to supplemental procedures and relevant date, plus up to 10 errands comprising reviewing of statutory provisions and effecting of major amendments. As regards promotion efforts; done are printing of notes on application of counseling services, brief introduction of Intellectual Property Management System, Specification of Intellectual property Management System, Paragon of Management Handbook and Guide to Assessors. Promotion efforts were consummated in 3 promotion seminars which took place in the north, central and southern part of Taiwan respectively, also done is an outcome share party where the protagonist is paragon manufacturer introducing the system in question; cooperation has been an event with Economic Daily News which has given an in-depth coverage on paragon counsel case. Forum on the media Economic Daily News whereat reputed scholars on intellectual property issues and experts in practice, such as Professor Ming-Yan Shieh of National Taiwan University, Professor Chung-Jen Cheng of Shih Hsin University, have been attending. As regards counseling for introduction, a total of 8 middle or smaller businesses have been successfully counseled into introduction for exemplification purposes in 2005, they are: Yulon-Nissan, Asia Optical Co., Inc., Advanced Connectek Inc. (ACON), Meifu Technologies, Universal Scientific Industrial Co., Ltd. (USI), Cycling & Hetitleh Tech Industry R&D Center (CHC), Apex Nanotechnology Corporation, and AURORA Office Automation Corp. 4 counsel execution meetings have been held, plus one Pre-assessment Seminar, on-the-spot written evaluation has been conducted with respect to 8 exemplary induced manufacturers. As regards personnel training, a total of 98 person-rounds have benefited under training programs encompassing: induction seeds, internal auditors, exemplary counselors, reserved seeds. 3. The Weighted Promotion Phase Following conclusion of infrastructural consolidation in 2005, diagnostic service was given to have a close check on existent intellectual property management system that was working in enterprises and organizations, this effort in concert with experiences accumulated through exemplary inducement, in 2006, in order to find out actual needs against differentials in place for promotion and rectification of the specifications in use of the management of intellectual properties: Institutionally, way from 2006 the unified designation “Taiwan Intellectual Property Management System” (TIPS) will apply as a common technical specification in sectors including: industry, government, schools, R&D interests, Follow-up promotion tasks will continue in the form of a team comprising interested scholars, experts invited by the grace of the Industry Bureau, in charge of strategic planning, execution, supervision, and literature screening. As regards promotion and propagation, in 2006 it is largely through self-assessment and evaluation, to which participation is on a voluntary basis with notices served on induced enterprises of organizations, To spread afar the inducement movement so that more and more people are adequately enlightened with what is all about TIPS, a total of 3 instruction seminars have been sponsored in the north, central and south to go pursuant to the inducement experience concluded in 2005, plus several occasions of manufacturers’ conceptual exchange meetings. As regards counseled inducements, a total of 30 manufacturers have benefits under the TIPS diagnostic service as offered, they are: Tatung Co., Taiwan Design Center (TDC), King Car Industrial Co., Ltd., Systex Corporation, National Nano Device Laboratories (NDL), National Center for High-Performance Computing (NCHC), Chi Mei Frozen Food Co., Ltd., Eastech Electronics (Taiwan) Inc., Lee Chi Enterprise Co., Ltd., WisTek, PRIT Biotech Co., Ltd, Intech Taiwan Corporation, Yeastern Biotech Co., Ltd., Yangsen Biotechnology Co., Ltd., Apex Biotechnology Corp. (ApexBio), Taiwan Electric Voice Co., Ltd. (TEV), Gewise Industrial Inc., SportsArt Industrial Co., Chien Yuan Food Chemicals Co., Ltd., Unicare Biotechnology Corp., Tek Maker Corporation, Chi Lin Technology Co., Ltd., Ihetitleh Co., Ltd., A3000 System Co., Ltd., Standard Chem. & Pharm. Co., Ltd., Jwo Ruey Technical Co., Ltd., Omni Hetitleh Group, Alinc Taiwan Co., Ltd., Marie International Co., Ltd., S.Z.S. Co., Ltd., each of them outstanding and highly revered in their respective field of avocation. From them 5 manufacturers have been chosen to account for exemplary TIPS inducement cases, these are: TDC, King Car Industrial Co., Ltd, Systex Corporation, Yeastern Biotech Co., Ltd., SportsArt Industrial Co., to demonstrate how the recommended Intellectual Property Management Specification works in reality, As regards personnel training services: one round of Tips inducement trainee course and one round of TIPS self-assessment trainee course have been sponsored to benefit a total of 91 person-rounds 16 professionals have been entered on registration as counselors, one round of assessment commissioner pre-task seminar has been sponsored. IV. Outlook of Future Planning Based on the consensus reached in “Conference to Work for the Instituting and Promotion of Taiwan Intellectual Property Management Standard” sponsored by the Ministry of Economic Affairs, universal promotion of the intellectual property management system will be implemented continually in phases so that same may be introduced to industries different in scale or fields of interest with more flexibilities, comprising both enterprises and organizations: Institutionally, specifications will adapt to the scale and classification of the industry concerned, with possibilities to allow for the planning of simplified versions and industry-specific versions, besides, the introducing of TIPS specifications will inevitably incur the necessity of integrality with existent ISO systems, owing to limited timing allowed for counseling intervention, the Industry Bureau will firstly strive for the buildup of TIPS with as many as possible manufacturers. Embodiment of ISO with TIPS is a precondition to introducing the latter, since ISO is an internationally recognized standard, in so far as TIPS fails to be combined with ISO, to target industries the inducement task is always a mission impossible, As regards promotion and propagation, the government is planning to qualify industries to which the suggested intellectual property management system has been introduced successfully as eligible for extra score when they go applying for benefit under Creative R&D Counsel Plan, or for favorable terms in closing same plan, this as an incentive to induce more manufacturers, Being considered is the editing of Inducement Manual which would include introduction of exemplary cases, exemplary inducement procedures, to help build up interchange of inducement experiences among manufacturers, More concrete encouragement means will be offered to pilot manufacturers who are willing to set themselves as paragon in the inducement movement, and manuals disclosing governmental resources relevant to the issue of intellectual properties will be compiled for manufacturers' reference; sponsoring promotion seminars addressed to specific group of manufacturers, whereat pilot manufacturers will give an account of their own initiation experiences. As regards inducement counseling, a review of the background of manufacturers to which TIPS has been introduced will yield the notion that most of our traditional industries or medium and small technique R&D oriented concerns fell short of the manpower and experience necessary for management of intellectual properties, so they very much need and wish that the government assist them to build their own Intellectual Property Management System. To alleviate cost burden on the intending enterprises or organizations, being envisioned is enlargement of scope of reach of services in coordination with e-mail dominant autonomous verification system, phase-wise inducement mode may be introduced eventually to help reinforce the autonomous verification software capabilities, and to assist induced plants in operation. Currently the target is set at reaching titleogether 300 manufacturers who are able to run autonomous verifications under TIPS by the year 2008, meanwhile 50 rounds of TIPS external assessments are completed for the manufacturers and titleogether 120 clients having received TIPS diagnostic services. As to personnel training, being continually sponsored are training courses, under planning are certifying training agency buildup programs so that the training service may spread wide afar, by the year 2008 a total of 280 TIPS professionals will have been turned out due to training efforts; it is believed that more individuals would be attracted by appealing on the importance of intellectual properties with respect to corporations and individuals alike, so as to prolong and spread benefits by reason of resource input. As regards R&D progressions, as incessant improvements, researching efforts are indispensable to the buildup of impeccable intellectual property management system; current status of intellectual property management among local industries will be surveyed persistently in parallel with studying of present status of intellectual property managements around the world. It is hoped that through personnel training, what with publication, exchange and transmission of experiences accumulated with intellectual property management system or institutions, incessant improvement of intellectual property management system, setup of evaluation scheme respecting and so as to make more wholesome intellectual property management systems, the day will come sooner for “Wholesale and universal institutionalization of generalized intellectual property management systems across the manufacturers, legal persons, consortium in particular, researching institute throughout Taiwan” to come true. V. Conclusions: A Reliable statistic source in 2006 claimed that the percentage of commercialization by local manufacturers to whom patent rights have been granted against application is merely 0.3%, which figure is 10 times behind the corresponding average in international communities, the latter being 3% It is advisable for our manufacturers to realize that innovation and intellectual property management are independent of capital resources, management subsequent to the acquisition of patent privileges must never go slow or put aside. The prime object of implementation of TIPS by the government is to push for universal buildup of intellectual property management system so that local manufacturers whose interests are associated therewith may best exploit as well as protect their properly owned intellectual privileges thanks to subsequent relevant planning, that they be alerted to application of patented rights once granted to them. For any enterprise or organization to establish their own intellectual property management system after TIPS, they will have to understand in the first place their own strengths and weaknesses and orientation for future operations, they will then fix defined policy and corporate objective, and that supported by the top management level, the next step, is to decide as to whether an ad hoc unit be installed by taking into consideration corporate scale and resources, or if it is more desirable to commission intellectual property management to outside concerns. Creation of intellectual property depends upon the character of corporate products, the setup of an intellectual property management system is meant to manage the creation, up keeping and application of intellectual properties, the training mechanism functions to promote conceptions about intellectual property by instilling same among corporate employees, concrete safety guarding measures are required to physically protect intellectual properties. Safeguarding operations to provide protection of intellectual properties must be checked periodically, the PDCA model will intervene to appropriately amend both policy directive and systems of intellectual properties so that the system may best achieve its intended purposes by incorporating the auditing, accounting and financial management of intellectual properties at the same time. Fair and just verification scheme will be built to verify what happens to an industry to which the system has been introduced for some time, so that the industry may remain alert as to where it stands in the system; the need for counseling services arising as a result of corporate aspiration to pass evaluation will help create a market of counseling service addressed to service industries intending to offer systematic management services to needy clients, Then corporations or organizations will sooner pay more attention to the management of intellectual properties, while knowledge service industry will develop and prosper in like measure, the causes interacting with each other to bid birth to more innovation and growth, and Taiwan is brought closer and closer to fulfilling its affectionately nicknamed designation: Intelligence Island.

TOP