2016年10月27日,FCC依據傳播法案(Communication Act)第222條通過《寬頻用戶隱私保護規則》(Rules to Protect Broadband Consumer Privacy, 下稱2016 Privacy Order)。2016 Privacy Order主要包含以下三點:
2016 Privacy Order通過後受到ISP業者大力抨擊,尤其是網站瀏覽與應用程式使用紀錄亦須取得消費者事先同意之部分,其認為如此可能扼殺電子商務發展,消費者亦可能被不必要的警示轟炸。由於2016 Privacy Order引起諸多不平,因此通過後半年,美國參議院與眾議院分別於2017年3月投票廢止,總統並於4月3日正式簽署此份國會審查法案(Congressional Review Act)。
廢止《寬頻用戶隱私保護規則》之原因為,消費者之個人資料雖可受到保護,但該規則僅適用於寬頻服務提供者與其他電信供應商,並不包含網站與前端服務(edge services)。是以僅ISP業者受到較嚴厲之管制,其餘網路服務則由FTC管轄,而FTC對隱私權之規範較為寬鬆,因此可能發生提供不同服務的兩家業者使用同一份客戶資料,受到的管制程度卻不同之情形。
贊成2016 Privacy Order之議員與消費者自助組織(consumer-advocacy groups)表示ISP業者應受到較嚴厲之規範,因消費者能輕易在網站間轉換,卻不能輕易更換ISP,且ISP得以取得消費者在所有網站上之瀏覽資料,但如Google與Facebook等大廠雖非ISP業者,卻亦能取得不限於自身網站的客戶瀏覽資料。
由於《寬頻用戶隱私保護規則》已正式廢止,FCC將不得再通過其他相同或實質上相同之規範,對ISP業者之管制回歸《傳播法案》第222條,亦即,對於網站瀏覽與應用程式使用紀錄之使用或分享,不須取得客戶之事先同意。
美商Motorola 公司(下稱MOT) 旗下Symbol Technologies, Inc.及Wireless Valley Communications, Inc.公司於2007年8月27日在美國德拉瓦州(Delaware)地方法院對美商Aruba Networks公司(下稱ARUN)提起專利侵權訴訟,指出ARUN侵害他們的無線區域網路連結技術(WLAN)等四項專利,並向法院申請永久禁制令及金錢上的損害賠償。 2008年9月,ARUN向法院申請反訴並向美國專利商標局(USPTO)對上開四項專利申請再審,指出MOT所據以主張的專利權申請日晚於ARUN之現有技術(Prior Arts)實施日。 今(2009)年2月,美國專利商標局已陸續對於ARUN所提的再審核發初審報告。其中,US Patent No.6625454中12/14說明項被認定為無效;US Patent Nos.6973622, 7173922之再審初審報告指出全部說明項都被認定為無效;目前還有1件ARUN申請的專利再審案在審查中,而根據MOT於法院上的陳述,美國專利商標局所受理的再審專利案件中,也多將原專利權認定為無效或變更。 ARUN所提的再審結果雖然尚未確定,但多數分析師認為再審結果多有利於ARUN。待再審結果確認後將會影響MOT v ARUN的訴訟結果,對於損害賠償判定也會有重大影響 。
美國發明法(America Invents Act)修正法案通過,為美國專利制度寫下里程碑美國參議院在2011年9月通過發明法修正案(Leahy-Smith America Invents Act),並經總統歐巴馬簽署同意公布,預計新修正的法案內容,將為美國專利制度寫下里程碑。觀察該法案幾項重要變革包括: 一、 專利權之取得:以先申請制(First to file)取代先發明制(First to invent),目的在於增進美國專利制度與國際專利制度的調和,以及確保發明人的權利保障可與國際普遍的制度接軌。新規定將自2013年3月16日開始實施。 二、 先前技術(prior art)之定義與新穎性優惠期(grace period):新法擴張先前技術(Prior Art)之範圍,申請專利之發明於申請日之前,如已見於刊物、已公開使用、已銷售或其他公眾所得知悉者,即因已公開而成為先前技術之一部分,喪失新穎性。惟在例外的情況下,申請專利之發明,在申請日前一年內由發明人或共同發明人自己,或間接透過第三人進行之公開行為等,則不被視為先前技術。 三、 支持小型企業或獨立發明人:修正條文要求美國專利及商標局(USPTO)應與相關智慧財產權協會合作,為小型企業或獨立發明人提供協助,並設立專利監察專案(Patent Ombudsman Program)提供申請專利之相關幫助,同時給予小型企業與微型實體(Micro Entities)最高75%的規費減免優惠。 美國在此次修正其發明法的過程中,納入過去25年來國際專利制度協商後的成果,雖有論者指出該法仍未解決部分問題,然而儘管有這些不足之處,新通過的法案仍解決了舊法時期不合理之處。
世界經濟論壇發布《人工智慧公平性和包容性藍圖》白皮書世界經濟論壇(World Economic Forum, WEF)於2022年6月29日發布《人工智慧公平性和包容性藍圖》白皮書(A Blueprint for Equity and Inclusion in Artificial Intelligence),說明在AI開發生命週期和治理生態系統中,應該如何改善公平性和強化包容性。根據全球未來人類AI理事會(Global Future Council on Artificial Intelligence for Humanity)指出,目前AI生命週期應分為兩個部分,一是管理AI使用,二是設計、開發、部署AI以滿足利益相關者需求。 包容性AI不僅是考量技術發展中之公平性與包容性,而是需整體考量並建立包容的AI生態系統,包括(1)包容性AI基礎設施(例如運算能力、資料儲存、網路),鼓勵更多技術或非技術的人員有能力參與到AI相關工作中;(2)建立AI素養、教育及意識,例如從小開始開啟AI相關課程,讓孩子從小即可以從父母的工作、家庭、學校,甚至玩具中學習AI系統對資料和隱私的影響並進行思考,盡可能讓使其互動的人都了解AI之基礎知識,並能夠認識其可能帶來的風險與機會;(3)公平的工作環境,未來各行各業需要越來越多多元化人才,企業需拓寬與AI相關之職位,例如讓非傳統背景人員接受交叉培訓、公私協力建立夥伴關係、提高員工職場歸屬感。 在設計包容性方面,必須考慮不同利益相關者之需求,並從設計者、開發者、監督機關等不同角度觀察。本報告將包容性AI開發及治理整個生命週期分為6個不同階段,期望在生命週期中的每個階段皆考量公平性與包容性: 1.了解問題並確定AI解決方案:釐清為何需要部署AI,並設定希望改善的目標變量(target variable),並透過制定包容性社會參與框架或行為準則,盡可能實現包容性社會參與(特別是代表性不足或受保護的族群)。 2.包容性模型設計:設計時需考慮社會和受影響的利益相關者,並多方考量各種設計決策及運用在不同情況時之公平性、健全性、全面性、可解釋性、準確性及透明度等。 3.包容性資料蒐集:透過設計健全的治理及隱私,確定更具包容性的資料蒐集路徑,以確保所建立之模型能適用到整體社會。 4.公平和包容的模型開發及測試:除多元化開發團隊及資料代表性,組織也應引進不同利益相關者進行迭代開發與測試,並招募測試組進行測試與部署,以確保測試人群能夠代表整體人類。且模型可能隨著時間發展而有變化,需以多元化指標評估與調整。 5.公平地部署受信任的AI系統,並監控社會影響:部署AI系統後仍應持續監控,並持續評估可能出現新的利益相關者或使用者,以降低因環境變化而可能產生的危害。 6.不斷循環發展的生命週期:不應以傳統重複循環過程看待AI生命週期,而是以流動、展開及演變的態度,隨時評估及調整,以因應新的挑戰及需求,透過定期紀錄及審查,隨時重塑包容性AI生態系統。 綜上,本報告以包容性AI生態系統及生命週期概念,期望透過基礎設施、教育與培訓、公平的工作環境等,以因應未來無所不在的AI社會與生活,建立公司、政府、教育機構可以遵循的方向。
全美各州醫療委員會聯合會發布人工智慧(AI)治理指引,並要求醫師為AI之利用結果負最終責任全美各州醫療委員會聯合會(The Federation of State Medical Boards, FSMB)於2024年4月發布「引導人工智慧以負責任與符合倫理方式融入臨床實務」(Navigating the Responsible and Ethical Incorporation of Artificial Intelligence into Clinical Practice)指引,明確概述醫師於利用AI協助提供照護時可採取之步驟,以履行其倫理與專業職責,期能藉此降低對患者造成傷害之風險;本指引之特色在於,其要求醫師為AI之利用結果負最終之責任。 FSMB 向各州醫療委員會與其他利害關係人所提供之原則與建議如下,以支持對包含AI之臨床照護進行負責任與符合倫理之監管: (1)透明度與揭露(Transparency and Disclosure): 應要求維持於醫療照護領域使用AI之透明度;各州醫療委員會應制定明確之指導方針,向患者揭露AI之使用情況,其有助於患者與醫師之理解,但不會造成不必要之行政負擔;FSMB 應制定文件,詳細說明最常用之AI工具之功能與局限性,以協助醫療委員會發揮監管者之角色,並應制定常見問題與最佳實務文件,作為提供照護時利用AI方面關於透明度之資源。 (2)教育與理解(Education and Understanding): FSMB及其於醫學教育界之合作夥伴,應為醫師、醫療委員會與患者,確認有關醫療照護中AI之結構化教育資源,該等資源應包括協助瞭解AI如何運作、其優點、潛在風險以及對患者照護之影響。 (3)負責任之使用與問責(Responsible Use and Accountability): 開發人員應協助醫師瞭解何時、以及如何於患者之照護中利用AI工具;選擇AI工具支援臨床決策之醫院系統、保險公司或其他機構應向醫師提供有關AI工具之教育、存取各工具之性能報告,並應設計一個定期檢視工具功效的流程;AI工具應以得使各州醫療委員會能稽核與理解之方式設計,以便適當評估依賴工具輸出結果之醫師是否偏離照護標準(standard of care);FSMB 應支持各州醫療委員會針對臨床醫師如何負責任、可問責地使用AI之解釋。 (4)公平性與近用(Equity and Access): 應努力確保所有患者皆能公平地近用AI帶來之好處;FSMB與各州醫療委員會致力於以下原則:醫療人員所提供之照護是公平的、且不受基於種族、民族或其他形式歧視之偏見影響;FSMB應與其他利害關係人一起理解並解決演算法偏差問題。 (5)隱私與資料安全(Privacy and Data Security): AI工具之開發者必須實施嚴格之保護措施,以保護AI開發與評估時所利用之患者資料,通常情況下應告知患者資料如何被利用,且FSMB應與行業利害相關人一起制定AI系統使用與散布患者資料之政策,包括針對AI開發或評估中使用之患者資料之最低資料保護措施。 (6)監督與監管(Oversight and Regulation): 各州醫療委員會必須保留對於提供醫療服務時,不當應用AI工具之醫生進行紀律處分之權力,其包括問責議題之考慮,特別是當AI系統變得更加自主時;各州醫療委員會應審查其管轄範圍內如何對「醫療行為」(practice of medicine)進行法律定義,以確保對提供醫療照護、人力或其他方面進行持續之監管監督。 (7)法律法規之持續審查與調整(Continual Review and Adaptation of Law and Regulations): 各州醫療委員會應在FSMB之支持下,隨著AI之不斷發展,持續檢視與更新與AI相關之指引與法規;政策制定者應考慮AI對基本法律原則的影響,例如醫療行為之定義以及AI對企業醫學實務之影響;FSMB 應建立一個專門團隊,持續檢視與調整AI指引與法規。 本指引指出,AI工具通常無能力取代醫師之專業判斷、道德責任或對州醫療委員會之責任,醫療行為中之關鍵職業責任始終為確保診斷、臨床決策與建議不存在偏差。與用於診斷或治療疾病之任何其他工具或鑑別方法相同,醫療專業人員有責任確保基於證據結論之準確性與真實性,因此於將AI系統用於患者照護前,醫師應以合理努力識別與解決偏差(如虛假或不準確之資訊等)。