美國最高法院肯定電玩同樣受到憲法第一修正案言論自由之保護

  美國最高法院日前針對Brown v. EMA & ESA(即之前的Schwartzenegger v. EMA)一案作出決定,確認加州政府於2005年制定的一項與禁止販賣暴力電玩(violent video games)有關的法律,係違反聯邦憲法第一修正案而無效。

  該加州法律係在阿諾史瓦辛格(Arnold Alois Schwarzenegger)擔任加州州長時通過。根據該法規定,禁止販售或出租暴力電玩給未滿18歲的未成年人,且要求暴力電玩應在包裝盒上加註除現行ESRB分級標誌以外的特別標誌,故有侵害憲法第一修正案所保障的言論自由之虞。本案第一審、第二審法院均認定加州「禁止暴力電玩」法案係屬違憲。

  而最高法院日前於6月27日以7比2的票數判決,肯定下級審的見解。最高法院認為,電玩(video games)係透過角色、對話、情節和音樂等媒體,傳達其所欲表達的概念,就如同其他呈現言論的方式(如書本、戲劇、電影),皆應受到憲法言論表達自由原則之保護。

  因此,對同樣受到憲法保障的遊戲內容表達,只有在有重大(值得保護)的公益須維護時,才能對其加以限制;同時,限制手段亦須通過最嚴格的審查標準(stringent strict scrutiny test)。最高法院認為,本案中加州政府並無法證明有重大(值得保護)的公益存在,且以法律禁止販賣的手段也無法通過審查標準。

  如同美國娛樂軟體協會(ESA)CEO Michael D. Gallagher所說,政府不應採取立法禁止的方式,限制遊戲內容的表達自由;反之,美國電玩產業一直以來都遵守一套自願性的分級制度(Entertainment Software Rating Board rating system),藉以提供消費者有關遊戲內容的資訊。這套分級制度已足以協助家長從包裝盒上辨認出遊戲內容,確保未成年人不接觸不適宜的遊戲。

  判決出爐後,產業界紛紛表示這是對遊戲產業的一大勝利。本案也證明,即使面臨日新月異科技發展的挑戰,憲法所保障的言論自由表達原則,同樣適用在新興科技的表現媒介。

相關連結
※ 美國最高法院肯定電玩同樣受到憲法第一修正案言論自由之保護, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=5526&no=65&tp=1 (最後瀏覽日:2025/04/12)
引註此篇文章
你可能還會想看
因應美國華盛頓州《我的健康我的資料法》施行,受監管對象隱私權政策應更新

美國華盛頓州《我的健康我的資料法》(My Health, My Data,以下簡稱該法)於2024年3月31日生效,該法係於2023年4月27日通過。目標在於保護華盛頓州消費者的健康資料,特別是生殖健康相關資料(data related to reproductive healthcare)。所拘束對象並不在HIPAA之監管範圍內,包括穿戴式裝置(wearables)、特定零售購物和非HIPAA 所規範之遠距醫療服務(telehealth services)所蒐集之資料。 該法最繁瑣合規要求之一為,受監管對象必須在其主頁上公佈消費者健康資料相關隱私權政策(下統稱隱私權政策)連結,連結必須為獨立、特定且不得包含該法所未要求之額外資訊。另針對小型企業,則設有三個月之緩衝時間,即應於 2024 年 6 月 30 日前遵循該要求。 隱私權政策必須清楚且醒目地揭露以下內容: 1. 所蒐集之健康資料類別和蒐集目的,包括將如何使用這些資料; 2. 所蒐集健康資料來源及類別; 3. 共享之健康資料類別; 4. 共享消費者健康資料的第三方或相關企業之類別;以及 5. 消費者如何行使該法所賦予之權利,包括撤銷同意和要求刪除之權利。 最重要的是,除特殊情形外(即1.已揭露其他特定目的2.取得消費者對其他特定目的所為蒐集、使用、揭露之明確同意),受監管對象不得基於隱私權政策中未明確揭露之任何其他目的,蒐集、使用或共享消費者健康資料。 若違反該法相關規定,即被視為違反《華盛頓州消費者保護法》(the Washington Consumer Protection Act),可由華盛頓州總檢察長提出強制執行。另該法為美國第一部保護大量健康資料之法律,顯現對消費者資料保護監管逐漸嚴格之趨勢。

美國聯邦最高法院認定多方複審程序並不違憲

  美國聯邦最高法院於2018年4月24日針對OIL STATES ENERGY SERVICES, LLC v. GREENE’S ENERGY GROUP, LLC, ET AL.ㄧ案作成判決。大法官以 7-2 投票表決通過,認定美國專利商標局(United States Patent and Trademark Office,USPTO)所屬專利審查暨上訴委員會(Patent Trial and Appeal Board,PTAB)進行內部專利審查「多方複審 (Inter Partes Review,IPR)」程序並未違憲。多方複審程序係國會在制度設計上針對專利獲證許可後,授權行政機關可經由實質利害關係人提出申請後,得有機會再次檢視其原先核發專利獲證許可的權限。因此被告經由行政機關專利審查獲得之權利,與被告在美國憲法下只能經由聯邦法院和陪審團裁決所保障權利不同。   本案自去年聯邦最高法院受理後,即成為美國發明法(Leahy-Smith America Invents Act)施行後備受矚目的重大案例之一。主要因為本案凸顯出各產業對多方複審程序實質影響的反應。若多方複審程序被判無效的話,將導致大部分專利紛爭從專利審查暨上訴委員會移回聯邦法院。導致美國發明法欲藉由行政審查改善並減輕司法體系負擔之目的難以達成,且導致專利訴訟更為耗時且昂貴,恐造成「非實施專利事業體」(Non-Practicing Entity, NPE)更加猖獗。因此,資通訊產業等普遍受到專利侵權訴訟困擾的企業大多贊同多方複審程序的合憲性。然而,大法官 John Roberts 和 Neil Gorsuch 對此一保守的決定表示異議,認為辛苦研發之專利僅因為第三人提起申請就受到行政機關撤銷,而非經由司法體系裁決仍有其疑義之處。仔細檢視多方複審程序的進行,似有違背於司法審查中要求獨立性的種種目的和精神。從歷史上來看,縱使行政機關具有核發專利獲證許可的權限,但不代表這可以導出行政機關就有撤銷專利的權限。因此,不同意見之大法官認為藉由行政機關的審議程序取代司法審查對專利可以做出撤銷的決定並不合憲。

強制蒐集人體生物資料的人權標準-聯合國人權事務委員會的見解

人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例

人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例 資訊工業策進會科技法律研究所 蔡宜臻法律研究員 2018年11月27日 壹、事件摘要   美國係推動人工智慧用於醫療服務的領航國家,FDA轄下的數位健康計畫(Digital Health Program)小組負責針對軟體醫療器材規劃新的技術監管模式,在過去五年中,該計畫發布了若干指導文件 ,嘗試為醫用軟體提供更為合適的監督管理機制。但由於指導文件並非法律,監管的不確定性依舊存在,因此近兩年 FDA推動修法並做成多項草案與工作計畫,望以更具約束力的方式回應軟體醫療器材最新技術於臨床之適用。當中最為重要的法制變革,便是2016年底國會通過之《21世紀治癒法》(21st Century Cures Act)。該法重新定義了醫用軟體的監管範圍,一般認為是對人工智慧醫用軟體的監管進行鬆綁,或有助於人工智慧醫用軟體的開發與上市。然而在新法實施近兩年以來,實務上發現人工智慧的技術特質,會導致在進行某些「臨床決策支援之人工智慧軟體」是否為醫療器材軟體之認定時,產生極大的不確定性。對此FDA也於2017年12月作成《臨床與病患決策支持軟體指南草案》(Clinical and Patient Decision Support Software-Draft Guidance for Industry and Food and Drug Administration),望能就部份《21世紀治癒法》及其所修正之《聯邦食品藥物化妝品法》(Federal Food, Drug, and Cosmetic Act, FD&C Act)[1]裡的規範文字提供更為詳細的說明。   本文望能為此項法制變革與其後續衍生之爭議進行剖析。以下將在第貳部分重點說明美國2016年頒布的《21世紀治癒法》內容;在第參部份則針對人工智慧技術用於醫療臨床決策支援所發生之爭議進行分析;最後在第肆部份進行總結。 貳、重點說明   2016年12月美國國會頒布了《21世紀治癒法》,在第3060節明確界定了FDA對數位健康產品(Digital Health Products)之管轄範圍,將某些類型的數位健康產品排除在FDA醫療器材(medical device)定義之外而毋須受FDA監管。此規定亦修正了美國《聯邦食品藥物化妝品法》第520節(o)項有關FDA排除納管之軟體類別之規定。   根據新修正的《聯邦食品藥物化妝品法》第520節(o)(1)項,美國對於醫用軟體的監管範疇之劃設乃是採取負面表列,規定以下幾種類型的軟體為不屬於FDA監管的醫用軟體: 行政管理目的[2];或 目的在於非關診斷、治療、緩解、預防或病症處置之健康維持或健康生活習慣養成[3];或 目的在於進行電子化的個人健康紀錄[4];或 目的用於傳輸、儲存、格式轉換、展示臨床研究或其他裝置資料與結果[5];或 同時符合以下四點之軟體: (1)不從體外醫療器材或訊號蒐集系統來讀取、處理或分析醫療影像或訊號[6]。 (2)目的在於展示、分析或印製病患醫療資訊,或其他醫療訊息(例如:偕同診斷之醫療研究、臨床處置指南)[7]。 (3)目的在於替醫療專業人員就疾病或症狀之預防、診斷或處置提供支持或臨床建議[8]。 (4)使醫師在使用該軟體時尚能獨立審查「臨床建議產生之基礎」,因此醫師所做成之臨床診斷或決策,並非主要依賴該軟體提供之臨床建議[9]。   雖然大多數被排除的類別相對無爭議,但仍有一部分引起法律上不小的討論,即《聯邦食品藥物化妝品法》第520節(o)(1)(E)項所指涉的某些類型之臨床決策支援軟體(Clinical Decision Support Software,以下簡稱CDS軟體)。   CDS軟體係指分析數據以幫助醫療手段實施者(例如:醫師)做出臨床決策的軟體。多數以人工智慧為技術基礎的醫療軟體屬於此一類型,比方病理影像分析系統。根據《21世紀治癒法》與《聯邦食品藥物化妝品法》,CDS軟體是否被排除在FDA的管轄範圍之外,取決於該軟體是否「使醫師在使用該軟體時尚能獨立審查『臨床建議產生之基礎』,因此醫師所做成之臨床診斷或決策,並非主要依賴該軟體提供之臨床建議」[10]。若肯定,則將不被視為FDA所定義之醫療器材。為使此一規定更加明確,FDA於2017年12月8日發布了《臨床與病患決策支持軟體指南草案》,該指南草案針對如何評估軟體是否能讓醫師獨立審查臨床建議產生之基礎進行說明。FDA表示該軟體至少要能清楚解釋以下四點[11]: 該軟體功能之目的或用途;及 預期使用者(例如超音波技師、心血管外科醫師);及 用於產生臨床建議的原始資料(例如患者的年齡和性別);及 臨床建議產生背後之邏輯或支持證據   後續方有機會被FDA認定係令醫療專業人員使用該軟體時,能「獨立審查」臨床建議產生之基礎。換言之,指南草案所提的四點,為FDA肯認醫師在使用軟體時尚能「獨立審查」之必要前提。除此之外,指南草案尚稱預期使用者必須能自己做成與軟體相同之判斷,並且要求「用於生成臨床建議與演算邏輯的原始資料必須可被預期使用者辨識、近用、理解,並為公眾可得」[12],進而方有機會符合《聯邦食品藥物化妝品法》第520節(o)(1)(E)(iii)之規定;若該軟體亦同時符合第520節(o)(1)(E)之其他要件,則有望被劃分為非醫療器材而不必受FDA監管。   由於規範內容較為複雜,指南草案亦提供案例說明。比方若一糖尿病診斷軟體是由醫生輸入患者參數和實驗室測試結果(例如空腹血糖、口服葡萄糖耐量測試結果或血紅蛋白A1c測試結果),並且該裝置根據既定臨床指南建議患者的病情是否符合糖尿病的定義,可被FDA認定為「非醫療器材」[13];而諸如分析電腦斷層、超音波影像之軟體,則仍維持屬於醫療器材[14]。   另需注意的是,《聯邦食品藥物化妝品法》在第520節(o)(3)(A)(i)項亦建立「彌補性納回(claw-back)」機制,FDA需遵守通知評論程序(notice-and-comment process)以便及時發現軟體可能對健康造成嚴重危害的風險,並隨時將之納回監管範疇中。同時FDA每兩年必須向國會報告醫療器材軟體的實施經驗[15]。 參、事件評析   《21世紀治癒法》頒布至今兩年,FDA已核准多個以人工智慧為技術核心的軟體,例如在2018年2月13日通過能自動偵測可疑的大血管阻塞(large vessel occlusion, LVO),並迅速通知醫師病人可能有的中風危險的臨床決策支援軟體:Viz.AI Contact application;又比如於2018年4月11日通過利用演算法分析由視網膜攝影機(Topcon NW400)所獲得的影像,快速篩檢糖尿病病人是否有必須由專業眼科醫師治療的視網膜病變的IDx-DR。   然而,在CDS軟體以人工智慧為技術核心時,現有的法規與監管框架依舊有幾點疑慮: 一、「理解」演算法?   根據新修正之《聯邦食品藥物化妝品法》,如果CDS軟體欲不受FDA監管,醫師的決策必須保持獨立性。目前規定只要該醫療產品「企圖」(intended to)使醫師等專業人員理解演算法即可,並不論醫師是否真正理解演算法。然而,若FDA肯認理解演算法對於執行醫療行為是重要的,那麼當CDS係基於機器學習產生演算法時,具體該如何「理解」就連開發者本身都未必能清楚解釋的演算法?有學者甚至認為,CDS軟體是否受到FDA法規的約束,可能會引導至一個典型的認識論問題:「我們是怎麼知道的?(How do we know?)」[16]。對此問題,我們或許需要思考:當醫師無法理解演算法,會發生什麼問題?更甚者,未來我們是否需要訓練一批同時具備人工智慧科學背景的醫療人員?[17] 二、如何要求演算法透明度?   指南草案所提之「清楚解釋臨床建議產生背後之邏輯或支持證據」以及資料來源為公眾可得、醫生對演算法使用的資料來源之近用權限等,被認為是FDA要求廠商應使CDS軟體之演算法透明[18]。但根據FDA指南草案公告後得到的反饋,醫療軟體廠商對此要求認為並不合理。廠商認為,應該從實際使用效益來審視人工智慧或機器學習軟體所提出的臨床建議是否正確,而不是演算法是什麼、怎麼產生[19]。 三、醫療專業人員之獨立專業判斷是否會逐漸被演算法取代?未來醫療軟體廠商與醫療專業人員之責任該如何區分?   FDA目前的法規與指南並未直接回應此二問題,惟其對於不被列管之CDS軟體之規定係需使醫師並非主要依賴該軟體提供之臨床建議、醫師能自己做成與軟體相同之判斷。由反面解釋,即FDA肯認部份CDS軟體具備與醫師雷同之臨床診斷、處置、決策之功能,或能部份取代醫師職能,因此需受FDA監管。是故,醫師之專業能力與人工智慧演算法相互之間具有取代關係,已是現在進行式。惟究竟醫師的判斷有多少是倚靠人工智慧現階段尚無法取得量化證據,或需數年時間透過實證研究方能研判。往後,醫療軟體廠商與醫師之責任該如何區分,將會是一大難題。 肆、結語   隨著醫療大數據分析與人工智慧技術的發展,傳統認知上的醫療器材定義已隨之改變。雖然硬體設備仍然在診斷、治療與照護上扮演極為重要的角色,但軟體技術的進步正在重新改寫現代醫療服務執行以及管理模式。這些新產品及服務為醫療器材市場帶來活水,但同時也形成新的監管議題而必須採取適當的調整措施。美國FDA針對近年來呈爆炸性發展的醫療軟體產業不斷調整或制定新的監管框架,以兼顧使用者安全與新技術開展,並於2016年通過了極具改革意義的《21世紀治癒法》,且以此法修正了《聯邦食品藥物化妝品法》。   然而,新法實施後,關於個別醫用軟體是否納為不受FDA監管的醫療器材仍有法律認定上的灰色空間。舉例而言,倍受矚目的以人工智慧為核心技術的CDS軟體,在新法框架下似乎可能存在於監管紅線的兩側。根據新修正之《聯邦食品藥物化妝品法》,一CDS軟體是否屬於醫療器材軟體,關鍵在於醫師能否「獨立審查」從而「非主要依賴」軟體所提供之臨床建議。也由於此要件概念較為模糊,FDA後續在2017年發布《臨床與病患決策支持軟體指南草案》為此提供進一步解釋,然而仍無法妥適處理人工智慧機器學習技術所導致的演算法「該如何理解?」、「透明度該如何認定?」等問題。更甚者,從整體醫療服務體系納入人工智慧協助臨床決策診斷之趨勢觀之,未來醫療專業人員的獨立判斷是否會逐漸被演算法取代?未來人工智慧軟體與醫療專業人員之責任該如何區分?都是醞釀當中的重要議題,值得持續關注。 [1] 21 U.S. Code §360j [2] FD&C Act Sec. 520(o)(1)(A) [3] FD&C Act Sec. 520(o)(1)(B) [4] FD&C Act Sec. 520(o)(1)(C) [5] FD&C Act Sec. 520(o)(1)(D) [6] FD&C Act Sec. 520(o)(1)(E) [7] FD&C Act Sec. 520(o)(1)(E)(i) [8] FD&C Act Sec. 520(o)(1)(E)(ii) [9] FD&C Act Sec. 520(o)(1)(E)(iii) [10] “Enabling such health care professionals to independently review the bases for such recommendations that such software presents so that it is not the intent that such health care professional rely primary on any of such recommendations to make clinical diagnosis or treatment decisions regarding individual patient.” FD&C Act, Sec. 520(O)(1)(E)(iii) [11] FOOD AND DRUG ADMINISTRATION[FDA], Clinical and Patient Decision Support Software-Draft Guidance for Industry and Food and Drug Administration (2017), .at 8 https://www.fda.gov/downloads/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm587819.pdf (last visited Sep. 21, 2018) [12] 原文為 “The sources supporting the recommendation or underlying the rationale for the recommendation should be identified and easily accessible to the intended user, understandable by the intended user (e.g., data points whose meaning is well understood by the intended user), and publicly available (e.g., clinical practice guidelines, published literature)”, id, at 8 [13] FOOD AND DRUG ADMINISTRATION[FDA], supra note 11 [14]FOOD AND DRUG ADMINISTRATION[FDA], supra note 11 [15] 21th Century Cures Act, Sec. 3060(b) [16] Barbara J. Evans & Pilar Ossorio, The Challenge of Regulating Clinical Decision Support Software after 21st Century Cures. AMERICAN JOURNAL OF LAW AND MEDICINE (2018), https://papers.ssrn.com/sol3/Delivery.cfm/SSRN_ID3142822_code1078988.pdf?abstractid=3142822&mirid=1 (last visited Sep. 21, 2018) [17] Id. [18] Gail H. Javitt & J.D., M.P.H., ANESTHESIOLOGY, Regulatory Landscape for Clinical Decision Support Technology (2018), http://anesthesiology.pubs.asahq.org/article.aspx?articleid=2669863 (last visited Sep. 21, 2018) [19] REGULATIONS.GOV, Clinical and Patient Decision Support Software; Draft Guidance for Industry and Food and Drug Administration Staff; Availability(Dec. 8, 2017)  https://www.regulations.gov/docketBrowser?rpp=25&po=0&dct=PS&D=FDA-2017-D-6569&refD=FDA-2017-D-6569-0001 (last visited Sep. 25, 2018)

TOP