Google關鍵字廣告服務,遭澳洲政府起訴

  澳洲「競爭和消費者委員會」(Australian Competition and Consumer Commission;以下簡稱ACCC)在今年7月對Google及其廣告主Trading Post Australia提起訴訟,指控Google及Trading Post使所用的關鍵字廣告系統不實誤導網路使用者,構成了欺詐性的商業行為。

 

  Trading Post為澳洲當地知名的汽車經銷商,在2005年時,Trading Post向Google購買了名為Kloster Ford和Charlestown Toyota的關鍵字廣告;然而,Kloster Ford和Charlestown Toyota正是Trading Post的競爭對手,當網路使用者在Google的搜尋引擎中鍵入Kloster Ford或Charlestown Toyota文字時,搜尋結果頁面即自動導向Trading Post的網站。

 

  ACCC認定Trading Post此種利用競爭對手名稱設定為自身廣告關鍵字之行為,已違反澳洲在1974年頒布的「商業行為法」(Trade Practices Act 1974)第52條及第53條d款規定;ACCC同時認為,Google並未善盡努力在消費者鍵入關鍵字進行搜尋時,將付費廣告鏈結(sponsored links)從基本的搜尋結果頁面中將加區隔,亦有違該法第52條之規定。

 

  在ACCC對Google提出控訴之前,Google事實上在各國早已面臨多起類似的訴訟;其中,去年由法國知名品牌Louis Vuitton提起的訴訟中,Google即遭到敗訴。

相關連結
※ Google關鍵字廣告服務,遭澳洲政府起訴, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=2325&no=65&tp=1 (最後瀏覽日:2025/04/09)
引註此篇文章
你可能還會想看
美國眾議院通過爭議性的GMO產品標示草案

  美國聯邦眾議院在7月23日時通過極富爭議性的《2015安全與精準食物標示法》(Safe and Accurate Food Labeling Act of 2015)草案,目前該案已經交由美國聯邦參議院審理,並完成參議院二讀程序,交由參議院農業、營養與森林委員會(Committee on Agriculture, Nutrition, and Forestry)審理。本案主要目的在於替自願性基因改造與非基因改造標示建立一套統一的聯邦標準。引發爭議的是本案第203條b項的規定,該條款規定禁止各州建立強制性基因改造產品標示制度。   該案由堪薩斯州選出的共和黨籍聯邦眾議員Mike Pompeo提出。根據他及本案最主要的遊說團體美國雜貨製造商協會(Grocery Manufacturers Association)的說法,之所以要禁止各州建立強制性的GMO產品標示制度,目的有二:一是透過建立全國性的標準,避免各州標準不同的紊亂。一是他們認為「基改產品跟非基改產品一樣好」,如果強制標示可能會誤導消費者,使其認為基改產品可能是有問題或風險的。同時,他們也擔心強制標示可能將導致產品的價格上升。這樣的主張確實獲得了許多眾議院議員的支持。該案在眾議院通過時獲得了275張支持票,其中有45票是民主黨籍眾議員投下的。分析這些投下贊成票的民主黨籍眾議員,大部分是來自對食物價格較為敏感的選區,或是在競選期間就已經收到來自農業部門的巨額捐款。   至於反對者則認為,由於本案將使各州及聯邦食藥署無法建立強制性的標示規定,侵害人民對於基改產品知的權利,而將此案稱為「黑暗法」(DARK Act)。他們認為在科學界對基因改造產品安全仍無絕對的共識、人民又對基改作物存有疑慮的情況下推動這項法案完全不合理。而這樣的爭論隨著今年三月世界衛生組織所屬的研究機構──國際癌症研究機構宣布將廣泛用於GMO穀物的除草劑草甘膦(或稱嘉磷塞,Glyphosate)歸類為2A類致癌物 (對人類很可能有致癌性,probable human carcinogen)後,變得更為激烈。許多反對者因此對基因改造產品的安全性有更高的疑慮。   一般預料,美國聯邦參議院將開始處理本案,支持與反對本案雙方的競爭也越趨白熱化,目前也有幾個修正的提案正在醞釀。當前美國國內已有康乃狄克州及緬因州等少數州別通過了強制的基改食品標示法案,此外還有66個法律案正在27個不同的州審議中。本案如果通過將大幅改變美國在此領域的管制情形。而由於美國是全球重要的基改產品生產國,本案的最終結果預料也經影響未來國際上對基改產品標示的管制。

日本發布利用AI時的安全威脅、風險調查報告書,呼籲企業留意利用AI服務時可能造成資料外洩之風險

日本獨立行政法人情報處理推進機構於2024年7月4日發布利用AI時的安全威脅、風險調查報告書。 隨著生成式AI的登場,日常生活以及執行業務上,利用AI的機會逐漸增加。另一方面,濫用或誤用AI等行為,可能造成網路攻擊、意外事件與資料外洩事件的發生。然而,利用AI時可能的潛在威脅或風險,尚未有充分的對應與討論。 本調查將AI區分為分辨式AI與生成式AI兩種類型,並對任職於企業、組織中的職員實施問卷調查,以掌握企業、組織於利用兩種類型之AI時,對於資料外洩風險的實際考量,並彙整如下: 1、已導入AI服務或預計導入AI服務的受調查者中,有61%的受調查者認為利用分辨式AI時,可能會導致營業秘密等資料外洩。顯示企業、組織已意識到利用分辨式AI可能帶來的資料外洩風險。 2、已導入AI利用或預計導入AI利用的受調查者中,有57%的受調查者認為錯誤利用生成式AI,或誤將資料輸入生成式AI中,有導致資料外洩之可能性。顯示企業、組織已意識到利用生成式AI可能造成之資料外洩風險。 日本調查報告顯示,在已導入AI利用或預計導入AI利用的受調查者中,過半數的受調查者已意識到兩種類型的AI可能造成的資料外洩風險。已導入AI服務,或未來預計導入AI服務之我國企業,如欲強化AI資料的可追溯性、透明性及可驗證性,可參考資策會科法所創意智財中心所發布之重要數位資料治理暨管理制度規範;如欲避免使用AI時導致營業秘密資料外洩,則可參考資策會科法所創意智財中心所發布之營業秘密保護管理規範,以降低AI利用可能導致之營業秘密資料外洩風險。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

日本2021年修正《個人資料保護法》,整合個資法體系

  日本於2021年5月19日公布新修正之《個人資料保護法》(個人情報の保護に関する法律),並預計於2022年4月正式施行。修法重點如下: 一、法律形式及法律管轄一元化:現行日本個人資料保護法制依適用對象分為《個人資料保護法》、《行政機關個人資料保護法》(法律行政機関の保有する個人情報の保護に関する法律)、《獨立行政法人等個人資料保護法》(独立行政法人等の保有する個人情報の保護に関する法律)及各地方政府個人資料保護條例等不同規範,修法後將統一適用《個人資料保護法》,並受到個人資料保護委員會之監督管理。 二、整合醫療及學術領域之規範:目前醫療及學術機構因隸屬於公部門或私部門適用不同規範,修法後無論公私立醫院、大學等原則上均適用相同規範。 三、調整學術研究之豁免規定:基於學術研究自由為憲法保障之基本權,現行《個人資料保護法》明文規定學術研究一律排除適用本法規定,惟2019年日本取得《歐盟一般資料保護規則》(GDPR)適足性認定之範圍未包含學術研究,故修法調整豁免規定為例外情形排除適用,如變更利用目的、取得敏感性個人資料及提供予第三者之情形。 四、整合個人資料及匿名化資料之定義:修法將公部門與私部門對個人資料之定義,整合為包含「易於」與其他資料比對後得以識別特定個人之要件。而《行政機關個人資料保護法》所稱「去識別化資料」(非識別加工情報),與《個人資料保護法》所稱「匿名化資料」(匿名加工情報),修法後將統一稱為「匿名化資料」。   為銜接上述修法內容,日本個人資料保護委員會自2021年8月起陸續針對《個人資料保護法施行令》、《個人資料保護法施行規則》及個人資料保護法相關指引公開徵求意見,後續值得持續觀察日本個人資料保護法制發展。

合成資料(synthetic data)

  「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。   在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。   英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。   技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。

TOP