日亞化學與前員工、現任美國加州大學教授中村修二(Shuji Maka mura)達成和解,日亞化學要支付中村修二本人8億4400萬日圓的費用,以補償其在日亞化學任內發明藍光LED晶粒技術,並帶給日亞化學日後龐大收入的功勞。
中村修二去年1月因不甘其在日亞化學工作期間,開發相關藍光LED晶粒技術,為公司帶進3300億餘日圓的收益,但日亞化學卻將專利獨佔,並未支付中村修二合理的費用。中村修二遂向日本地院提出告訴,日本地方法院一審判日亞化學敗訴,需支付200億日圓作為中村修二的補償金。日亞化學不服再向高院上訴,近日傳出雙方已達成和解,以8億4400萬日圓達成和解,其中6億850萬日圓係中村修二在日亞化學工作時開發出藍光LED晶粒後,為公司帶進約3300餘億日圓中屬中村修二的貢獻所得。
相較於一審判決日亞化學要賠200億日圓來看,此次只需支付8億4000餘萬日圓,替日亞化學省下了一大筆錢,且可早日解決此紛爭,日亞化學在此次官司中不能算輸,還可確立日亞化學日後擁有藍光LED晶粒的所有技術專利,有利日亞化學未來拓展白光LED及藍光晶粒市場。一般認為,日亞化學急於與中村修二達成和解之因,主要是藍光L ED晶粒市場仍在大幅成長中,預估今年全球LED市場需求可達到50億美元,其中白光及藍光LED也佔到一半以上,未來更是以倍數成長。日亞化學如未能快速解決與中村修二的官司,恐影響日亞化學在藍光及白光LED市場上的領先地位。
本文為「經濟部產業技術司科技專案成果」
歐洲人權法院(European Court of Human Rights,簡稱ECtHR)於2025年4月8日就Green v. The UK案作成判決,針對國會議員發言揭露個資是否構成隱私權侵害之爭議,強調國家就衡平立法權與司法權的界線、言論自由與隱私保護等利益享有裁量權,駁回了申訴人之請求。 一、事實背景 本案起源於英國每日電訊報(Telegraph)試圖就英國零售集團Arcadia的前員工針對其董事長Philip Green的職場性騷擾與霸凌指控進行報導。先前,Arcadia及Green已與涉及相關糾紛的員工達成了和解協議,依據協議所附保密協定,員工除正當揭露(如向警察揭露犯罪)外不得洩露相關資訊。Green於Telegraph於報導前徵求當事人評論時發現資訊遭洩露,隨即向法院申請禁制令與暫時禁制令,英國上訴法院嗣後批准了暫時禁制令,認定Telegraph獲得的資訊很可能來自違反保密協定的揭露,也不認為欲報導的內容當然具備凌駕當事人可能蒙受之損害的公共利益。Telegraph最終尊重了暫時禁制令。惟隔日,一位英國上議院議員援引言論免責權,於議會發表了雖不涉及細節,但具體提及Green身分和關於其性騷擾、霸凌的指控,並提及Telegraph遭禁制報導一事。Green因此向議會申訴,認為議員違反了司法保密規則(sub judice rule)(編按:上議院曾做成決議,認除非具全國重要性,議員不得於動議、辯論或質問中論及繫屬於法院中的個案)及濫用免責權,但上議院標準專員(House of Lords Commissioner for Standards)認為司法保密規則不屬於《上議院行為準則》。Green嗣後在法院中試圖向Telegraph請求賠償,認為Telegraph應要為議員的發言負責,違反了禁制令,並要求提供線人身分。Telegraph抗辯,在議員享有免責權的前提下,法院毋庸受理本案處理其責任問題。Green向ECtHR提出申訴,主張國家對議員使用免責權揭露受禁制令約束的資訊的權力缺乏事前和事後控制,侵犯了其受歐洲人權公約(ECHR)第8條保障的私生活權。 二、法院判斷 法院認為由於受暫時禁制令保護的資訊被揭露,Green的私生活權利確實受到干預。然而,法院不認為國家違反了公約課予國家保護私生活權之積極義務(positive obligation)。核心理由在於:國家對如何履行積極義務有廣泛的裁量權,且於各國就保護方式較無共識,或涉及基本權利間之衡平時,法院尤應尊重裁量空間。 針對本案,法院認為:(1)議會中的言論自由享有較高程度的保護,對其干涉需要非常重大的理由(very weighty reasons);(2)涉及司法權與立法權的具體界線,以及言論自由與隱私保護的利益衡量;(3)必須考量議會自治原則在多國之間有廣泛共識;(4)英國並非完全沒有針對國會議員發言的事前、事後控制措施。儘管非屬《上議院行為準則》,但上議院所做成的司法保密規則決議,仍屬一定程度的事前控制。事後來看,國會議員若確實構成濫用免責權,法院也可以判處蔑視法庭罪。 法院總結認為,基於原則上各國議會較國際法院,更適合評估限制議會行為之必要性與手段,法院要取代這個判斷須要非常重大的理由,但本案中Green並無法成功論述這個理由存在,因此駁回Green的主張。
部落格及其法律問題之初探 因應FTC與NLRB對競業禁止的態度轉變,提供企業機密管理建議本文整理截至2025年3月底,美國聯邦貿易委員會(Federal Trade Commission,下稱FTC)與全國勞工關係委員會(National Labor Relations Board,下稱NLRB)對於競業禁止的態度轉變,並整理因應政策趨勢之產業機密管理建議,提供企業參考。 一、FTC與NLRB對競業禁止的態度 1. FTC對競業禁止的態度:由「訂定規定以統一禁止競業禁止」轉為「針對不合理的競業禁止進行個案調查」 (1)由Lina Khan(前FTC主席)主導的FTC,於2024年4月通過「禁止企業簽訂競業禁止契約」最終版本的規定(以下稱「最終規定」)。最終規定要求大部分情況下,禁止企業與員工簽訂競業禁止契約。 其後,美國有3案挑戰FTC最終規定: 在ATS Tree Services, LLC v. FTC案,賓州法院於2024年7月同意FTC有權禁止其認為屬於不公平競爭的行為(競業禁止);而在另外兩案結果則相反,在Properties of the Villages, Inc. v. FTC案,佛州法院於2024年8月認定訴訟原告(房地產開發商)不受FTC最終規定的影響;而Ryan LLC v. FTC案,2024年7月德州法院更以FTC之立法範圍逾越其職權為由,於全國範圍認定撤銷最終規定。FTC不服兩案最終規定的結果並上訴。 關於最終規定的最新進展為,由Andrew Ferguson(現任FTC主席)主導的FTC,於2025年3月6日分別向第5、第11巡迴上訴法院提出動議,主張「擱置上訴審理120天(appeal in abeyance for 120 days)」。動議均已獲法院批准。 (2)此外,FTC現任主席於2025年2月26日宣布成立「聯合勞動力工作小組(Joint Labor Task Force)」,並發布備忘錄說明FTC將繼續關注反競爭行為,例如:公司與員工間的競業禁止契約、公司間互不招攬(人才)契約等。 即,可見FTC態度由「原則上禁止簽訂競業禁止契約」,轉為「依個案起訴其認為不合理的競業禁止契約」。 2. NLRB對競業禁止的態度:由「針對要求員工簽訂競業禁止的個案進行調查」轉為「將競業禁止行為排除調查範圍」 (1)NLRB為獨立的聯邦政府機構,由主任檢查官負責調查、起訴勞資案件。NLRB前主任檢查官Jennifer Abruzzo於2024年10月7日發布不具拘束力的GC 25-01備忘錄,其依循自己在2023年5月所發布的GC 23–08備忘錄中強調「過於寬泛的競業禁止契約,限制員工流動性,違反《國家勞工關係法》」,本次備忘錄進一步指出某些類型的『留任或付款(stay-or-pay)條款』侵害員工依NLRA所享有的權利」。並說明Jennifer Abruzzo欲自2024年12月6日起,調查該些「要求員工簽訂競業禁止、『留任或付款』條款的雇主」。 (2)現任的NLRB代理主任檢察官William B. Cowen於2025年2月14日發布GC 25-05備忘錄,該備忘錄以「NLRB積壓的案件量過多、需要全面審查過往備忘錄以符合當前需求」為由,針對過往NLRB發布的備忘錄,採取撤銷、撤銷後有待進一步提供指導等作法,其中包含「撤銷前述的GC 23–08、GC 25-01備忘錄」。 二、因應政策趨勢之產業機密管理建議 綜上,可得出競業禁止契約仍為FTC納管的範圍,本文彙整產業的建議,提供企業應及早採取的機密管理作法: 1. 針對政策面 應制定政策定義營業秘密,以鑑別營業秘密的範圍。 2. 針對人員面 (1)盤點企業內部既有的競業禁止契約,以確保契約條款中競業禁止的期限、地理範圍及業務範圍的限制不會過於廣泛,以致於無法執行;與員工簽訂其他類型契約,例如:保密契約、花園假條款、禁止僱傭關係終止後招攬(員工/客戶)的契約等。 (2)宣導企業的機密管理政策。 (3)提醒離職員工對企業的保密義務。 資策會科法所創意智財中心於2023年發布之「營業秘密保護管理規範」已涵蓋前述管理作法,我國企業如欲落實系統化的營業秘密管理作法,可以參考此規範。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
歐洲專利局發布人工智慧與機器學習專利審查指南正式生效歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。 在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。 其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵: (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。 (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。 在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。 近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」