日亞化學與前員工、現任美國加州大學教授中村修二(Shuji Maka mura)達成和解,日亞化學要支付中村修二本人8億4400萬日圓的費用,以補償其在日亞化學任內發明藍光LED晶粒技術,並帶給日亞化學日後龐大收入的功勞。
中村修二去年1月因不甘其在日亞化學工作期間,開發相關藍光LED晶粒技術,為公司帶進3300億餘日圓的收益,但日亞化學卻將專利獨佔,並未支付中村修二合理的費用。中村修二遂向日本地院提出告訴,日本地方法院一審判日亞化學敗訴,需支付200億日圓作為中村修二的補償金。日亞化學不服再向高院上訴,近日傳出雙方已達成和解,以8億4400萬日圓達成和解,其中6億850萬日圓係中村修二在日亞化學工作時開發出藍光LED晶粒後,為公司帶進約3300餘億日圓中屬中村修二的貢獻所得。
相較於一審判決日亞化學要賠200億日圓來看,此次只需支付8億4000餘萬日圓,替日亞化學省下了一大筆錢,且可早日解決此紛爭,日亞化學在此次官司中不能算輸,還可確立日亞化學日後擁有藍光LED晶粒的所有技術專利,有利日亞化學未來拓展白光LED及藍光晶粒市場。一般認為,日亞化學急於與中村修二達成和解之因,主要是藍光L ED晶粒市場仍在大幅成長中,預估今年全球LED市場需求可達到50億美元,其中白光及藍光LED也佔到一半以上,未來更是以倍數成長。日亞化學如未能快速解決與中村修二的官司,恐影響日亞化學在藍光及白光LED市場上的領先地位。
本文為「經濟部產業技術司科技專案成果」
近年日本中小企業與大型企業合作研發、進行交易合作的商業型態日益增加,故日本中小企業廳自2017年1月至2020年3月為止(約三年間),針對日本的中小企業進行了訪談,調查了中小企業與大型企業間約12,000筆合作研發等商業行為,從中發現了許多問題,如大型企業常藉由合作研發,參觀中小企業工廠的名義,實際上是竊取中小企業技術、know how;其他還有以共同研發為名,擅自將研發成果使用在其他領域的案例等。 由於中小企業常在商業合作上處與弱勢,故日本政府為促使中小企業與大型企業的合作能符合公平交易原則、以及保護中小企業的智慧財產、技術,防止中小企業的智慧財產、技術、Know how等無形資產被商業合作夥伴(大型企業)不當使用或以非法的方式取得、使用,故日本政府計劃於今年秋天發布「中小企業智慧財產、技術保護指針」。 為改善中小企業與大型企業合作時,可能遭遇的智財、技術歸屬等問題,除透過「中小企業智慧財產、技術保護指針」提供具體的對策與措施,日本中小企業廳將於2021年編列相關預算,以智慧財產權的角度協助中小企業解決智財相關問題,並強化中小企業保護智慧財產權之意識,另外還會提供中小企業智財諮詢等相關支援。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」
Google預期推出智慧金融卡科技巨頭Google目前預計依循Apple Card模式,與花旗銀行、Stanford Federal Credit Union合作開發「Google Card」智慧簽帳金融卡。 雖目前尚未正式發行,但根據TechCrunch報導指出,使用者在連結銀行帳戶後,可向Google Card轉入資金或從卡中轉出資金,消費時會直接從個人連結的銀行帳戶扣款。此外,Google Card將連接到具有新功能的Google應用程式,讓使用者得以輕鬆監管消費狀況、確認餘額或鎖定帳戶。 這對於Google來說,為非常重要的一步,因Google本身掌握巨量資料,因此透過Google Card,Google有機會獲得新的收入和消費數據,其將向消費店家酌收交易手續費,再與銀行拆分;此外,Google Card的隱私權政策中,可能利用用戶消費的交易數據,以改善投放商品廣告的衡量標準,若Google可以其金融商品推動銷售,將使更多的品牌願意購買Google廣告。 長期影響來看,Google Card可為Google提供銀行業務,包括股票經紀業務、財務建議或AI會計、保險、借貸諮詢,而因Google掌握大量數據,將可能使Google比傳統金融機構更能準確的管理金融風險,透過應用程式、廣告、搜尋和Android系統,Google和消費者之間建立深厚關聯,為推廣和提供金融服務建立一個充足的背景。隨著武漢肺炎疫情的漸緩,高利潤的金融商品也將幫助 Google 開發有效的收入機會並藉此提升股價。
歐盟第29條工作小組發布「自動化個人決策和分析指引」處理個人資料自動化決策與資料剖析風險問題歐盟第29條工作小組於2017年10月3日為因應歐盟一般資料保護規則(GDPR)第22條規定發布「自動化個人決策和分析指引」(Guidelines on Automated individual decision-making and Profiling for the purposes of Regulation 2016/679,2018年2月6日進一步修正,下稱指引),處理對個人資料自動化決策(automated decision-making)和個人檔案剖析(Profiling)的建立。 指引分為五個部分與最佳實踐建議,旨在幫助資料控制者(controller)合乎GDPR對個人資料自動化決策和分析的要求,內容包括下幾點:1.定義自動化決策和分析,以及GDPR對這些概念的處理方法;2.對GDPR第22條中關於自動化決策的具體規定;3.對自動決策和分析的一般規定;4.兒童和個人檔案剖析(Profiling)的建立;5.資料保護影響評估。 指引的主要內容包括: 個人檔案剖析(Profiling),意謂收集關於個人(或一群個人)的資料,並分析他們的特徵或行為模式,加以分類或分群,放入特定的類別或組中,和/或進行預測或評估(例如,他們執行任務的能力,興趣或可能的行為)。 禁止對個人資料完全自動化決策,包括有法律上法或相類重大影響的檔案剖析,但規則也有例外。應有措施保障資料主體的權利,自由和合法利益。 GDPR第22條第二項a之例外規定,(履行契約所必需的),自動化個人決策時,應該作狹義解釋。資料控制者必須能夠提出分析、自動化個人決策的必要性,同時考慮是否可以採取侵害隱私較少之方法。 工作小組澄清,關於在要求提供有關自動化決策所涉及的邏輯上有意義的資料時,控制者應以簡單的方法,告訴資料主體其背後的理由或依據的標準,而不得總是以自動化決策所使用算法進行複雜的解釋或者公開完整的算法為之。所提供的資料應該對資料當事人有意義。 對資料主體提供關於處理自動化決策上有關重要性和預期後果的資料,其意義在於必須提供關於該資料之用途或資料未來處理以及自動化決策如何影響資料主體的重要訊息。例如,在信用評等的情況下,應有權知道其資料處理的基礎,資料主體並能對其作出正確與否的決定,而不僅僅是關於決策本身的資料。 「法律效果」是指對某人的法律權利有影響,或者影響到個人法律關係或者其契約上權利。 工作組並未將GDPR前言71段視為絕對禁止純粹與兒童有關的自動決定,指出僅在某些情況下才有其適用(例如,保護兒童的福利)。 在基於自動化處理(包括分析)以及基於哪些決策產生法律效應或類似顯著效果的基礎上對個人方面進行系統和廣泛評估的情況下,進行資料保護影響評估並不局限於「單獨」自動化處理/決定。
日本下議會通過綠色法案為加強促進日本相關產業與政府政策對於太陽能和其他再生能源之投資比重,日本下議院(lower house of parliament)日前於8月23日通過綠色法案(目前未有正式名稱,外媒多以Green Bill稱之),該法案近日將由日本上議院(upper house of parliament)進行進一步的確認與審議。目前預計綠色法案和其他相關的配套法律措施將於2012年7月生效實施。 目前日本境內的總電力生產來源中,經由核能發電廠所生產之電力占日本總生產電量之30%,而日本政府預計於2030年將該種核能發電廠所生之電力提升至總生產電量比例之50%。然而,在日本福島於今年(2011)3月遭受地震和海嘯波及之後,其所衍生之核能發電廠輻射外漏事件,促使日本政府對於其現有之核能電廠興建計畫開始進行反思,且日本大眾對於此種原子能量之安全性,及相關的國家能源政策亦產生了質疑聲浪。日前,日本政府在思考其現有的能源政策走向,以及相關現況之檢視後,乃於2011年8月23日由其下議院通過綠色法案。 日本綠色法案的主要目的乃為減少當前日本主要電力生產來源為核能發電之現況,並且達成國際共同協議所訂定之減少溫室氣體排放目標。即便該綠色法案具有促進相關綠色能源電力發電設施的建置率升高,並且加速相關投資市場活絡的連帶效應,然而由於該法案目前針對各項綠色能源的使用收費價格細節尚未加以規範,因此對於未來消費者權益與鼓勵投資者投資各項新興綠色能源設施間之支出費用該如何加以平衡,仍為一個不確定的問題,而有待日後各相關部會加以討論規範。