美國的無線地面電視於今(2009)年6月12日起關閉類比訊號,全面進行數位播送。聯邦通訊委員會(The Federal Communications Commission, FCC)預期政府雖已進行大規模宣傳,但仍有部分家庭尚未完成準備。依尼爾森(Nielsen)公司調查,至6月14日止,尚有兩百五十萬用戶無法接收數位電視訊號;此外,相較於全部家庭中僅2.2%未完成數位轉換的準備,非洲裔與西班牙裔家庭未完成的比例則分別達4.6%與3.6%。
目前美國多數家庭是收看付費的有線電視與衛星電視,數位轉換對此部分觀眾並無明顯影響,但仍有數百萬家庭收看免費的無線電視。在數位轉換後,舊型電視機須加裝數位轉換盒,方能接收數位訊號;對此,美國政府已發放優待券補助用戶購買轉換盒(至7月底為止)。FCC表示,部分家庭裝置轉換盒與電台改善傳輸訊號,尚須花費數週時間,而民眾利用FCC的協助專線進行諮詢時,最普遍的問題則是有關優待券方案與轉換盒的安裝。
此外,電視台原本擔心在數位轉換後,部分受影響的人口(特別是年輕觀眾)將可能不再觀看電視,而選擇利用網路收視電視節目。但尼爾森公司的調查指出,數位轉換後整體收視率僅有些微下滑,除了數位化外,亦可能是受到天氣較佳或重要運動賽事轉播較少等因素影響。
世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。
國內版RoHS 將比照歐盟規定歐盟有毒物質禁用指令( RoHS )已自今年 7 月起上路,國際間陸續有其他國家跟進:目前為止,美國約有半數的州已通過相關法令,加州從明年起亦將開始實施;至於亞洲的日本已與歐盟同步實施、韓國將於明年 7 月上路;澳洲草案也已經出爐,至於實施日期則未定。 為與國際接軌,環保署也正積極推動國內版 RoHS ,目前法案名稱尚未確定,不過內容將會與國際接軌,除限制電子電機等產品,不得含有鉛、汞、鎘、六價鉻、聚溴聯苯和聚溴二苯醚等六種有毒化學物質或限制其比率外,檢驗標準亦將比照歐盟,採用事後市場管理機制,亦即先放行產品進口,並採事後抽測方式檢驗,因為採事前市場管理,將造成貿易障礙,實施檢驗亦有困難。至於罰責方面則仍須商榷,環保署表示目前我國要先合併「廢棄物清理法」與「資源回收再利用法」的法源,預定在年底前召開公聽會並送行政院審查,最快也要等明年立法院第一會期通過後才會實施。
美國最高法院認定警方向通信業者取得嫌犯之通信之基地台位址資訊須持有搜索票繼2012年最高法院認為警方在無搜索令的情況下,以GPS追蹤裝置查探犯罪嫌疑人之位置資訊違反憲法第四修正案。最高法院於2017年6月5日,認為警方未持搜索票,而向電信公司取得犯罪嫌疑人過去127天共計12,898筆之行動通信基地台位置資訊(cell-site data)之行為,違反憲法第四修正案。 由於個人利用行動通訊服務時,必須透過基地台進行通訊,因而可藉由該基地台位置,得知每個人所在之區域位置,而此一通訊紀錄過去被電信公司視為一般的商業資訊,因為得知通訊基地台的位置資訊,無法直接得知個人所在的精準位置,僅能得知其概略所在地區。 因此,犯罪調查機關基於1979年 Smith v. Maryland案所建立之原則,即只要該個人資訊屬於企業的一般商業紀錄(normal business record),警方可以在無搜索令的情況下,向企業取得個人資訊, 此一原則又稱為第三方法則(third-party doctrine)。過去在地方法院或上訴法院的審理中,法院對此多持正面見解,認為只要該資料與進行中之犯罪偵查活動有實質關聯(relevant and material to an ongoing criminal investigation),警方即可向業者取得。大法官Sonia Sotomayor早在前述2012年GPS追蹤裝置案的協同意見書中表示,第三方法則不應適用在數位時代,例如用戶撥電話給客服人員,或以電子郵件回覆網路購物的賣方等,無數的日常活動已經大量的向第三方揭露許多資訊。 在數位時代,大量的個人資訊以電磁紀錄的形式掌握在第三方手中,本案最高法院的見解,將會對美國的犯罪調查機關在未持搜索令的情況下,更慎重的判斷向業者取得個人資訊做為犯罪偵查使用時,是否與憲法第四修正案有所違背。
運用AI工具協助管理智慧財產組合(IP Portfolio)之方式美國實務界律師2023年6月9日撰文指出,人工智慧(artificial intelligence,簡稱AI)將對智慧財產法律和策略帶來改變,大部分企業熟悉的改變是目前仍有爭議的法律問題—由AI工具產生的發明創造是否為專利或著作權適格的保護標的。但除此之外,AI工具對於創建和管理智慧財產組合(IP Portfolio)的方式也已發生改變,並介紹以下五種利用AI工具協助管理智慧財產組合之方式。 1.簡化先前技術之檢索 無論是評估新產品的可專利性、評估競爭對手之智慧財產權之相關風險、抑或是回應侵權索賠,企業均須了解特定領域之先前技術,因應此需求,全球已有大量公司提供先前技術檢索服務,惟AI工具的出現使得企業可自行進行先前技術檢索。例如知名的文件審查平台Relativity創造了Relativity Patents,使用者輸入專利號碼等特定關鍵字即可進行先前技術檢索;美國專利商標局亦為了審查官開發一種AI工具,提升其確認先前技術之準確性及效率。 2.協助專利申請文件撰寫 對於專利申請人而言,可使用AI工具協助草擬專利申請範圍,有些企業甚至會運用AI工具自動化撰寫專利申請文件,惟使用AI工具撰寫專利申請文件時,應留意提供AI工具的資料是否會保密,抑或有向第三人提供之風險。此外,AI工具撰寫之內容建議仍須雙重確認內容正確性及適當性,如引用來源及內容是否正確。 3.改善商標維權能力 企業可使用AI工具協助監控潛在的侵權及仿冒產品,有鑒於現今網站及社群媒體仍有大量未經商標授權的賣家存在,AI工具可作為審查貼文及識別商標侵權案件之工具,相較於傳統的人工審查可更有效率。 4.協助商標檢索作業 於美國、澳洲、歐盟、中國,甚至世界智慧財產組織導入AI工具協助審查官進行商標審查,包括以關鍵字及影像標記之搜尋功能,此一工具不僅可簡化商標申請和註冊審查程序與時間,亦有部分國家提供使用者自行檢索之功能,使企業可進行更快速、有效率之商標檢索,使其於品牌保護策略上節省不必要之時間及金錢。 5.支持策略性專利組合管理 AI工具亦可協助專利組合管理,包括最廣的專利範圍、評估是否需繼續維護專利、或是評估擬收購專利之價值,以AI工具協助評估以上事項,雖無法完全取代人工進行策略評估,惟可顯著減少勞動力支出。 AI工具改變了智慧財產組合創建及管理之方式,雖然AI工具不能完全承擔管理智慧財產權組合之職責,但AI工具在專利/商標檢索、專利申請文件撰寫、專利權評估、商標維權等方面已可大量減少人力及管理成本,有助於企業智慧財產組合管理,惟企業及使用者須留意使用AI工具的資料管理問題,以避免機密資訊遭到外洩。 本文同步刊登於TIPS網站(https://www.tips.org.tw)