Thomson Reuters於11月14日當週,宣佈全球前100家最具創新機構,美國持續領先,而亞洲及歐洲分別屬第二及第三。然而,中國由於智慧財產保護及全球產品商品化實行因素,未能排入百大企業中。其名單結果來自於Thomson Reuters 2011全球百大創新專案,透過專屬方法分析專利資料及相關指標,來確認這些企業和機構於創新活動領先於全球之地位。
Thomson Reuters智慧財產解決方案事業部總裁David Brown表示:「創新使企業和國家成長繁榮,主要是為了追求克服經濟的衰退並達到競爭優勢」。
2011全球百大最具創新企業的市場資料,與2009年比較顯示,2010年百大企業增加了超過400,000工作機會,較前年提高3%,增加的比率高於同一期間的標準普爾(S&P)500企業的幅度。Brown表示:「全球百大創新組織創造的工作機會代表了創新為經濟成長具意義影響的指標」。除此之外,2011百大創新組織的市場價值加權平均收益較前一年度增加12.9%,而標準普爾500企業市場價值加權平均收益僅增加7.2%。
排名企業依地域分佈,其中40%來自為美國,31%為亞洲,29%為歐洲,亞洲主要為日本和南韓,前者占27%,後者占4%。歐洲主要區分為法國(11%),德國(4%),荷蘭(4%),列支敦斯登侯國(1%),瑞典(6%)及瑞士(3%)。法國為歐洲創新領導國。儘管大陸於專利申請數量佔領優先,但缺乏全球影響力及專利獲證比率之重要因素,故未進入前百大名單。
Thomson Reuters排名的方法,主要是以四大衡量基準:專利獲證比率(patent approval success rate),專利組合對於全球的影響(global reach of patent portfolio),對文獻引用的專利影響(patent influence in literature citation)及專利總數量(overall patent volume),選出前百大名單,如:Apple,Microsoft,Intel,LG和Motorola,全文內容可參考http://www.top100innovators.com/。
美國聯邦法官裁決AI「訓練」行為可主張合理使用 資訊工業策進會科技法律研究所 2025年07月07日 確立我國資料創新利用的法制基礎,建構資料開放、共享和再利用的各項機制,滿足民間及政府取得高品質、可信任且易於利用資料的需求,以資料提升我國數位發展的價值,並強化民眾權利的保障,我國於2025年6月16日預告「促進資料創新利用發展條例」,擬推動資料基礎建設,促進更多資料的釋出。 AI發展領先國際的美國,近日首次有聯邦法院對AI訓練資料表達肯定合理使用看法,引發各界關注[1]。我國已開始著力於AI發展所需的資料流通與有效利用,該判決將有助於啟示我國個人資料、著作資料合法使用之法制因應研析。 壹、事件摘要 2025年6月23日美國加州北區聯邦地方法院(United States District Court for the Northern District of California),威廉·阿爾斯法官(Judge William Alsup)針對Andrea Bartz、Charles Graeber、Kirk Wallace Johnson這三位美國作家,對Anthropic公司訓練大型語言模型(Large Language Model, LLM)時使用受其等著作權保護書籍一案,作出指標性的簡易裁決(summary judgment)[2]。 此案被告掃描所購買的實體書籍,以及從盜版網站複製取得的受著作權保護的書籍,儲存在其數位化、可搜尋的檔案中,用來訓練其正在開發的各種大型語言模型。原告主張被當開發Claude AI模型,未經授權使用大量書籍作為訓練資料的行為,為「大規模未經授權利用」。法院則以四要素分析架構,支持合理使用抗辯(Fair Use Defense),強調AI訓練屬於技術發展過程中不可或缺的資料利用,AI公司於模型訓練階段使用著作權書籍,屬於「合理使用」(Fair Use),且具「高度轉化性」(Highly Transformative),包括將購買的實體圖書數位化,但不包括使用盜版,也不及於建立一個永久性的、通用目的的「圖書館(library)」(指訓練資料集)。 貳、重點說明 依美國著作權法第107條(17 U.S.C. § 107)規定,合理使用需綜合考量四要素,法官於本案中認為: 一、使用的目的與性質—形成能力具高度轉化性 AI模型訓練的本質在於學習語言結構、語意邏輯,而非單純複製或重現原著作。AI訓練過程將大量內容作為輸入,經由演算法解析、抽象化、向量化,最終形成轉個彎創造出不同的東西 (turn a hard corner and create something different) 的能力,屬於一種「學習」與「再創造」過程。AI訓練的目的並非為了重現原著作內容,而是為了讓模型具備生成新內容的能力。這種「轉化性」(transformative use)極高,與單純複製或替代原著作的行為有明顯區隔[3]。 另外訓練過程對資料做格式變更本身並未增加新的副本,簡化儲存並實現可搜尋性 (eased storage and enabled searchability),非為侵犯著作權人合法權益目的而進行,亦具有轉化性 (transformative)。原告就所購買的紙本圖書,有權按其認為合適的方式「處置 (dispose)」,將這些副本保存在其資料集中,用於所有一般用途[4]。 二、受保護作品的性質--高度創作性非關鍵因素 法院認同原告所主張的書籍是具有高度創意(creative)的作品理應享有較強的保護。但法院亦認為合理使用的四個要素,須為整體衡量,儘管作品本身具有較高的創意性,但由於使用行為的高度轉化性以及未向公眾直接重製原作表達,整體而言,法院認定用於訓練 LLM 的行為構成合理使用[5]。 三、使用的數量與實質性--巨大數量係轉化所必要 法院認為AI模型訓練需大量內容資料,甚至必須「全書」輸入,看似「大量使用」,但這正是AI技術本質所需。AI訓練是將內容進行抽象化、數據化處理,最終在生成新內容時,並不會原封不動重現原作。所以,雖然訓練過程涉及全部作品,但AI模型的輸出並不會重現原作的具體表達,這與單純複製、重製作品的行為有本質區別[6]。 四、對潛在市場或價值的影響 本案法院明確指出,人工智慧模型(特別是原告的Claude服務)的輸出內容,通常為全新生成內容,並非原作的精確重現或實質模仿冒,而且Claude服務在大型語言模型(LLM)與用戶之間加入額外功能,以確保沒有侵權輸出提供予用戶。因此,此類生成內容不構成對原作的替代,不會削弱原作的銷售市場,也不會造成市場混淆,而且著作權法保護的是原創而非保護作者免於競爭[7]。 不過即便法院支持被告的合理使用主張,肯定AI訓練與著作權法「鼓勵創作、促進知識流通」的立法目的相符。但仍然指出提供AI訓練的合理使用(Fair Use)不代表資料來源的適法性(Legality of Source)獲得合法認定。沒有任何判決支持或要求,盜版一本本來可以在書店購買的書籍對於撰寫書評、研究書中的事實或創建大型語言模型 (LLM) 是合理必要 (reasonably necessary) 的。此類對原本可(合法)取得的圖書進行盜版的行為,即使用於轉化性使用並立即丟棄,「本質上」、「無可救藥地」(inherently、irredeemably)構成侵害[8]。 參、事件評析 一、可能影響我國未來司法判決與行政函釋 我國於現行著作權法第65條規定下,須於個案交予我國法院認定合理使用主張是否能成立。本案判決為美國首個AI訓練行為可主張合理使用的法院見解,對於我國法院未來就對AI訓練資料取得的合法使用看法,顯見將會產生關鍵性影響。而且,先前美國著作權局之報告認為AI訓練過程中,使用受著作權保護作品可能具有轉化性,但利用結果(訓練出生成式AI)亦有可能影響市場競爭,對合理使用之認定較為嚴格,而此裁定並未採取相同的見解。 二、搜取網路供AI訓練資料的合理使用看法仍有疑慮 依據本會科法所創智中心對於美國著作權法制的觀察,目前美國各地法院中有多件相關案件正在進行審理,而且美國著作權局的合理使用立場較偏向有利於著作權利人[9]。相同的是,均不認同自盜版網站取得的資料可以主張合理使用。然而AI訓練所需資料,除來自於既有資料庫,亦多來自網路搜取,如其亦不在可主張範圍,那麼AI訓練的另一重要資料來源可能會受影響,後續仍須持續觀察其他案件判決結果。 三、有效率的資料授權利用機制仍是關鍵 前揭美國著作權局報告認為授權制度能同時促進產業發展並保護著作權,產業界正透過自願性授權解決作品訓練之方法,雖該制度於AI訓練上亦尚未為一完善制度。該裁決也指出,可合理使用資料於訓練AI,並不代表盜版取得訓練資料可以主張合理使用。這對於AI開發而言,仍是須要面對的議題。我國若要發展主權AI, 推動分散串接資料庫、建立權利人誘因機制,簡化資料查找與授權流程,讓AI訓練資料取得更具效率與合法性,才能根本打造台灣主權AI發展的永續基礎。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]相關新聞、評論資訊,可參見:Bloomberg Law, "Anthropic’s AI Book-Training Deemed Fair Use by US Judge", https://news.bloomberglaw.com/ip-law/ai-training-is-fair-use-judge-rules-in-anthropic-copyright-suit-38;Anthropic wins a major fair use victory for AI — but it’s still in trouble for stealing books, https://www.theverge.com/news/692015/anthropic-wins-a-major-fair-use-victory-for-ai-but-its-still-in-trouble-for-stealing-books;Anthropic Scores a Landmark AI Copyright Win—but Will Face Trial Over Piracy Claims, https://www.wired.com/story/anthropic-ai-copyright-fair-use-piracy-ruling/;Anthropic Wins Fair Use Ruling In Authors' AI Copyright Suit, https://www.thehindu.com/sci-tech/technology/anthropic-wins-key-ruling-on-ai-in-authors-copyright-lawsuit/article69734375.ece., (最後閱覽日:2025/06/25) [2]Bartz et al. v. Anthropic PBC, No. 3:24-cv-05417-WHA, Doc. 231, (N.D. Cal. June 23, 2025),https://cdn.arstechnica.net/wp-content/uploads/2025/06/Bartz-v-Anthropic-Order-on-Fair-Use-6-23-25.pdf。(最後閱覽日:2025/06/25) [3]Id. at 12-14. [4]Id. at 14-18. [5]Id. at 30-31. [6]Id. at 25-26. [7]Id. at 28. [8]Id. at 18-19. [9]劉家儀,美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?https://stli.iii.org.tw/article-detail.aspx?no=0&tp=1&d=9352。
歐盟個人資料保護委員會提出關於資料主體接近使用其個人資料權利之指引歐盟《一般資料保護規則》(General Data Protection Regulation, GDPR)第15條為「資料主體之接近使用權(Right of access)」,其第1項規定「資料主體有權向控管者確認其個人資料是否正被處理」,資料主體並得知悉其個資處理之目的、所涉及之類型等事項。該條係為使資料主體在獲得充分、透明且容易接近之資訊,使其得更輕易的行使如資料刪除或更正等權利。 因條文在文字上具抽象性,就具體內涵仍須有一定基準,故歐盟個人資料保護委員會(European Data Protection Board, EDPB)於2022年1月18日,針對GDPR中之接近使用權提出指引(Guidelines 01/2022 on data subject rights - Right of access),闡明在不同的情況中,資料主體應如何向資料控管者(Data Controller)主張接近使用權,並且說明資料控管者針對此項權利之義務內涵。 就具體內容,該指引包含:接近使用權之範圍、資料控管者應向資料主體提供之資訊內容、資料主體請求資訊之格式、資料控管者應如何提供資訊、GDPR第12條第5項所稱「資料主體之請求明顯無理由或過度者」之概念為何。指引並製作流程圖,以便利資料主體輕易的了解向資料控管者主張權利之步驟。 而對於資料控管者,指引亦說明其應如何解釋與評估資料主體之請求、應如何回覆特定請求、限制接近使用權之例子。該指引旨在從各方面分析接近使用權,經由舉例與設想特殊情形,以求為該權利提供更精確之指導。
美國網路安全聯盟提出網路安全策略建議報告美國網際網路安全聯盟(Internet Security Alliance,ISA)日前公佈一份新的報告,期使歐巴馬政府之「網路空間政策檢討」(Cyberspace Policy Review)能更進一步的落實。 網路安全聯盟主席Larry Clinton指出:「ISA對歐巴馬政府的網路安全政策表示支持,而目前民間機構需要設計一套規範,去落實ISA與政府對於網路安全重要議題共通之協議。本次所提出的報告,就是為了要提供能解決此一關鍵問題的架構。」 此份報告之標題為「利用ISA之社會契約模型執行歐巴馬政府之網路安全策略」(Implementing the Obama Cyber Security Strategy via the ISA Social Contract Model),而此報告強調必須重視網路安全的經濟意義。 Clinton認為,一旦討論到網路安全議題,會發現所有的經濟因素都對攻擊者有利,攻擊者總是能以簡單、成本低廉之攻擊方式得到巨大的利益。相對地,防守者(網路使用者)卻往往要付出高昂的成本。需要防護的領域太廣,而投資的回收通常很有限。必須從經濟的角度去平衡考慮成本與回收,才能建立具實效性且持續穩固的網路安全系統。 此份報告包含下列事項之架構:1.在商業計劃層面,創設政府與民間機構的合作夥伴關係,以強化網路安全;2.提出關於網路安全的國際議題;3.維持全球IT產業供應鏈的安全;4.建立新式資訊分享範例。 上述架構均依循ISA之網路安全社會契約模型,此一模型是源自於20世紀早期美國政府為了提供民間企業電信與電力服務,所成功建立之夥伴關係。
歐盟執委會通過關於《人工智慧責任指令》之立法提案歐盟執委會(European Commission)於2022年9月28日通過《人工智慧責任指令》(AI Liability Directive)之立法提案,以補充2021年4月通過之《人工智慧法》草案(Artificial Intelligence Act)。鑑於人工智慧產品之不透明性、複雜性且具自主行為等多項特徵,受損害者往往難以舉證並獲得因人工智慧所造成之損害賠償,《人工智慧責任指令》立法提案即為促使因人工智慧而受有損害者,得以更容易獲得賠償,並減輕受損害者請求損害賠償之舉證責任。 《人工智慧責任指令》透過引入兩個主要方式:(一)可推翻之推定(rebuttable presumptions):人工智慧責任指令透過「因果關係推定(presumption of causality)」來減輕受損害者之舉證責任(burden of proof)。受損害者(不論是個人、企業或組織)若能證明人工智慧系統因過失或不遵守法規要求之義務,致其受有損害(包括基本權利在內之生命、健康、財產或隱私等),並且該損害與人工智慧系統之表現具有因果關係,法院即可推定該過失或不遵守義務之行為造成受損害者之損害。相對的,人工智慧之供應商或開發商等也可提供相關證據證明其過失不可能造成損害,或該損害係由其他原因所致,以推翻該損害之推定。(二)證據揭露機制(disclosure of evidence mechanism):若受害者之損害涉及高風險人工智慧時,得要求自該供應商或開發商等處獲取證據之權利。受害者透過證據揭露機制能夠較容易地尋求法律賠償,並得以找出究責的對象。 歐盟執委會認為以安全為導向的《人工智慧法》,為人工智慧訂定橫向規則,旨在降低風險和防止損害,但仍需要《人工智慧責任指令》之責任規定,以確保損害風險出現時,相關賠償得以被實現。但歐盟執委會仍選擇了較小的干預手段,《人工智慧責任指令》針對過失之責任制度進行改革,並未採取舉證責任倒置(a reversal of the burden of proof)之作法,而是透過「可推翻之推定」,一方面減輕受損害者之舉證責任,使受損害者得對影響人工智慧系統並產生過失或侵害行為之人提出損害賠償;另一方面賦予人工智慧之供應商或開發商等有機會推翻前揭造成損害之推定,以避免人工智慧系統之供應商或開發商面臨更高的責任風險,可能阻礙人工智慧產品和服務創新。