歐盟針對體外診療器材提出新管制架構,預期將於2015年正式實施

  歐盟對於體外診療器材(In Vitro Diagnostic Medical Devices,以下簡稱IVDs)之管制,最早起始於1998年的體外診療器材指令(Directive 98/79/EC on In Vitro Diagnostic Medical Devices,以下簡稱「1998年IVDD指令」),該指令依IVDs是否具有侵入性、接觸病人的時間長短及是否需要能源加以驅動等條件,進一步區分為四種風險等級:第1級(Class I)-低風險性、第2a級(Class IIa)-低至中風險性、第2b級(Class IIb)-中至高風險性、第3級(Class III)-高風險性。Class I因風險性最低,故1998年IVDD指令僅要求廠商建立品管系統、保留產品技術檔案、並自為符合性聲明後,即得於市場上流通;Class IIa與Class IIb則由於風險略高,所建立之品管系統需經過「符合性評鑑」;而Class III的風險最高,故其品管系統除須符合前述要求外,更應由經歐盟認證的代檢機構(Notified Body)進行審查,通過前述評鑑及審查後,始可於歐洲市場流通使用。

 

  然而,隨著科學及技術的進步,市場上不斷出現創新性的產品,使得1998年IVDD指令已逐漸無法滿足管理需求,輔以各會員國對於指令的解釋和實施各有不同,致使歐盟內部在病患及公共健康的保護上有程度不一的落差,為歐盟單一市場的運作埋下隱憂。因此,歐盟執委會(European Commission)於2012年9月26日提出新的管制架構(Proposal for a Regulation of the European Parliament and of the Council on in vitro diagnostic devices),其主要變革包括:

 

1. 擴大IVDs的定義:將IVDs的範圍擴及用以獲取醫療狀況或疾病罹患傾向資訊(如基因檢測)的器材及醫療軟體(medical software)等。

 

2. 新的分類標準及評估程序:將診療器材重新分為A、B、C、D四類,A類為風險最低,D類為風險最高。A類維持原先1998年IVDD指令中的廠商自我管控機制,但當A類器材欲進行臨床測試(near-patient testing)、具備評量功能或用於殺菌者,須先由代檢機構就其設計、評量功能及殺菌過程進行驗證。B類器材因風險略高,故須通過代檢機構之品管系統審查;C類產品除品管系統審查外,需再提交產品樣本的技術文件;而D類由於風險最高,除前述品管系統審查外,需經過核准使能進入市場。至於A、B、C、D類產品進入市場後,代檢機構會定期進行上市後(the post-market phase)監控。

 

3. 導入認證人員(qualified person,簡稱GP):診療器材製造商應於組織內導入GP人員,負責確保製造商組織內部的一切法令遵循事宜。

 

4. 落實提升透明度(transparency)之相關措施:為確保醫療器材的安全性和效能,要求:(1) 歐盟市場內之經濟經營商(economic operator)應能夠辨認IVDs的供應者及被供應者;(2) 製造商應將單一裝置辨識碼(Unique Device Identification)導入產品中,以利日後之追蹤;(3) 歐盟單一市場中的所有製造商及進口商,應將其企業及產品資訊於歐洲資料庫(European database)中進行註冊;(4) 製造商有義務向大眾公開高風險性裝置的安全性與效能等相關說明資訊。

 

  歐盟執委會已提交新管制架構予歐洲議會,若順利通過將可望於2015年起正式實施,未來將對歐洲IVDs產業有何影響,值得持續觀察之。

本文為「經濟部產業技術司科技專案成果」

相關連結
相關附件
※ 歐盟針對體外診療器材提出新管制架構,預期將於2015年正式實施, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=5908&no=65&tp=1 (最後瀏覽日:2024/11/23)
引註此篇文章
你可能還會想看
FDA發佈人工智慧/機器學習行動計畫

  美國食品藥物管理署(U.S. Food & Drug Administration, FDA)在2021年1月12日發布有關人工智慧醫療器材上市管理的「人工智慧/機器學習行動計畫」(Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD) Action Plan)。該行動計畫的制定背景係FDA認為上市後持續不斷更新演算法的機器學習醫療器材軟體(Software as Medical Device, SaMD),具有極高的診療潛力,將可有效改善醫療品質與病患福祉,因此自2019年以來,FDA嘗試提出新的上市後的監管框架構想,以突破現有醫療器材軟體需要「上市前鎖定演算法、上市後不得任意變更」的監管規定。   2019年4月,FDA發表了「使用人工智慧/機器學習演算法之醫療器材軟體變更之管理架構—討論文件」(Proposed Regulatory Framework for Modifications to Artificial Intelligence/Machine earning (AI/ML)-Based Software as a Medical Device (SaMD) - Discussion Paper and Request for Feedback)。此一諮詢性質的文件當中提出,將來廠商可在上市前審查階段提交「事先訂定之變更控制計畫」(pre-determined change control plan),闡明以下內容:(1)SaMD預先規範(SaMD Pre-Specification, SPS):包含此產品未來可能的變更類型(如:輸入資料、性能、適應症)、變更範圍;(2)演算法變更程序(Algorithm Change Protocol, ACP):包含變更對應之處理流程、風險控制措施,以及如何確保軟體變更後之安全及有效性。   根據「人工智慧/機器學習行動計畫」內容所述,「事先訂定之變更控制計畫」構想被多數(包含病患團體在內)的利害關係人肯認,並於相關諮詢會議當中提出完善的細部建言。FDA將根據收到的反饋意見,於2021年以前正式提出有關人工智慧/機器學習上市後監管的指引草案(Draft Guidance),並持續研究提高演算法透明度、避免演算法偏見的方法。

人工智慧採購指南草案

  人工智慧作為一前瞻性技術,運用於公部門,可以降低成本、提高管理品質、節省基層公務人員時間,整體改善政府公共服務。然而AI技術進化以及市場發展過於快速,現有採購類型沒有可以直接適用AI採購的判斷標準範本。因此,英國人工智慧辦公室(Office for Artificial Intelligence)與產官學研各界進行研商後,於2019年9月20日發表人工智慧採購指南草案(Draft Guidelines for AI procurement),作為公部門採購AI產品與服務之準則。該指南旨在加強公部門採購人員能力、協助採購人員評估供應商,讓廠商可以隨之調整其產品和服務內容。   該指南提供採購人員規劃政府AI採購的方向,包含招標、公告、評選、決標到履約。但指南強調無法解決採購AI產品與服務時遇到的所有挑戰。   指南內容簡述如下: 在制定規範時應重視如何清楚闡述面臨到的問題,而非只是說明解決方案; 評估AI帶來的風險時應緊扣公共利益,在招標階段敘明以公共利益為核心,並有可能在招標、評選和決標階段變動評估標準; 在招標文件中確實引用法規和AI相關實務守則; 其他包含將AI產品的生命週期納入招標和履約考慮、為提供AI產品和服務的廠商創造公平競爭環境、需與跨領域的團隊進行採購討論、確保採購流程從一開始就建立資料管理機制等。

馬里蘭州去氧核醣核酸採集法(DNA Collection Act)引發隱私爭議

  2009年,馬里蘭州立法通過去氧核醣核酸(下稱DNA)採集法(DNA Collection Act),允許警方向已經被起訴但尚未定讞之犯罪嫌疑人採集DNA樣本,其適用對象主要在於暴力犯罪或一級竊盜案件。對此問題,美國大約有26州立有與馬里蘭州類似的法案,例如維吉尼亞州的執法單位對於暴力犯罪在經過逮捕後即可進行DNA採集。然而,該法案卻引發了隱私權利與公眾安全之平衡的爭論。   此次爭議爆發於Alonzo Jay King Jr. v. State of Maryland案,案件中Alonzo Jay King Jr.在2009年被起訴暴力攻擊,且因此被警方採集DNA,而後又在經過DNA比對之後,發現與2003年一宗強制性交案件所遺留下的DNA樣本符合,並據此判決Alonzo Jay King Jr.強制性交罪。本案經Alonzo Jay King Jr.上訴高等法院後,高等法院認為調查人員採集其基因資料並以之與舊案件進行比對,已經侵犯了美國憲法第四修正案所賦予人民的合理隱私期待,屬於不合法的搜索,並據此判決禁止向犯罪嫌疑人採集DNA樣本。本案目前正在最高法院上訴中,而最高法院首席法官John Roberts日前發布了一份命令,阻止了高等法院判決的生效,並使得馬里蘭州在最高法院作出判決之前仍然能夠採集DNA;全案預計將在10月進行聽證,未來,最高法院將如何判決,值得吾人注意。

「自動駕駛車(self-driving car)」可否合法上路?

  「自動駕駛車(self-driving car)」一般而言係指於汽車安裝感測器(sensors)以及軟體以偵測行人、腳踏車騎士以及其他動力交通工具,透過控制系統將感測到的資料轉換成導航道路,並以安全適當的方式行駛。其目前可分為兩類:「全自動駕駛車(full autonomous)」以及「半自動駕駛車(fully autonomous)」,全自動駕駛車係指可於指定地點出發後不需駕駛人(driver)在車上而到達目的地者之謂。全自動駕駛車又可為「用戶操作(user-operated)」與「無人駕駛車(driverless car)」。   目前包含賓士(Mercedes)、BMW、特斯拉(Tesla)等公司均預期於不久將來會發布一些具備自動駕駛特徵的車種,科技公司如Google亦對於自動駕駛車的科技研發不留餘力。   而從2012年開始,美國有17州以及哥倫比亞特區便開始在討論允許自動駕駛車上路的相關法規,而只有加利福尼亞州(California)、佛羅里達州(Florida)、內達華州(Nevada)及華盛頓哥倫比亞特區(Washington, D.C.)有相關法律的施行,其他州則尚未表態。而大部分的州傾向認為應由人類來操控(operating)汽車,但對於具體上到底有多少比例之汽車任務需由人類操控而多少比例可交由機器則尚有模糊空間。而是否肯認「人工智慧操控」符合法規之「人類操控」亦不明朗。不過在法律存有這樣灰色地帶時刻,Google搶先於加利福尼亞州進行測試其自動控制系統,期望之後於自動駕駛車逐漸上市普及後能搶占商機。

TOP