論科學資料之開放與共享—以美國國家衛生研究院之資料政策為核心 資訊工業策進會科技法律研究所 蔡立亭 2020年12月25日 科學研究以提升全人類之福祉為本,醫療健康研究資料的共享,有助於促進整體科學研究的量能。為促進由政府支持之科學資料與研究發現的近用,美國政府原則上肯定科學之發展與資料之留存、近用相關,資料之公開不僅應遵守法律之限制,尚應注意資料之生命週期,並訂定時限;受政府資助之研究,所產出之資料以免費近用為原則,政府之政策亦應考量國際合作之實際情況[1]。申言之,科學研究資料的近用,有助於提升科學發展,政府於制定共享政策的同時,亦應一併考量國際合作的情況,並以免費近用為原則,研議資料公開策略。 為增進科學資料的效益,美國國家衛生研究院(National Institutes of Health,簡稱NIH)設置科學政策辦公室(Office of Science Policy,簡稱OSP)制定完整的政策,領域擴及生物安全、基因檢測、基因資料共享、人類受試者保護、NIH的組織與管理,和受NIH資助研究的成果與價值;藉由廣泛的分析與報告,提出新興政策建議[2]。在科學資料共享的層面,NIH聚焦於「基因與健康」和「科學資料管理」,生物醫學研究的進展,取決於科學資料的近用;共享科學資料,有助於驗證研究結果,研究者整合資料以強化分析,提升難以生成資料的再次應用,加速研究進展[3]。NIH藉由資料的管理,促進科學資料的近用,以驗證並共享研究成果。 為輔助資料之開放共享,NIH公告資料管理與共享政策(NIH Policy for Data Management and Sharing,以下簡稱DMS政策),目的為促進由NIH資助或進行研究的科學資料共享[4]。DMS政策將科學資料定義為:「在科學社群普遍接受記錄事實的素材,研究發現能反覆的驗證,不論該資料是否用以支持學術出版物。科學資料並不包含實驗室筆記、初步分析、完整的個案報告表、科學報告的草稿、未來的研究計畫、同儕評論、與同事的溝通、物理實體,例如實驗室標本[5]。」。換言之,並非僅以該資料是否能佐證學術出版物為科學資料之認定基準,而係以該科學資料是否屬事實之記載,和研究成果能否反覆驗證為判斷。 另,NIH、NIH研究院、中心、辦公室已有資料預期的共享,如:科學資料的共享、相關標準、資料庫的選擇、時限,適用並於計畫中呈現;若不適用則研究員應在計畫中提出資料共享與管理的方式,NIH並建議資料的管理與共享應實踐FAIR(Findable、Accessible、Interoperable、Reusable)原則,共享的資料類型,首先為一般性的描述、估計在研究中生成或使用的科學資料,次為列出後設資料等有助於解釋科學資料的文件;NIH鼓勵科學資料盡快共享,不遲於資料的出版或執行期間[6]。申言之,即使各該研究計畫不適合既有的共享策略,於計畫提案時,研究團隊仍應研擬適合共享與管理的方式,並以FAIR原則為依準。 研究團隊提供的科學研究資料,將儲存於由政策或資助方指定的資料庫。NIH提出推薦的資料庫列表[7],並描述理想的儲存資料庫特色為:「具有獨特且永久的識別碼、具有長期持續管理資料的計畫、設置後設資料、整理資料並保證品質、免費並簡易的近用、廣泛且可估計的重複使用、明確的使用指引、安全性與完整性、機密性、共通格式、引用機制,及資料保留策略[8]」。由此觀之,資料庫的設計應易於科學資料的檢索;並在資料的近用上,維護資料之安全、完整、機密等。 NIH共享資料之實際應用上,為共享基因研究資料,NIH於2014年提出基因資料共享政策(Genomic Data Sharing Policy,以下簡稱GDS政策),包含NIH資助指南與契約;NIH的GDS政策適用於所有NIH資助的研究,生成之大規模人類或非人類之基因資料,將應用於後續的研究[9]。藉此能有效率的推動基因研究向前邁進。 GDS政策課予研究者提供基因資料的義務;研究者近用基因資料,亦應遵守基於研究使用控制近用資料(Controlled-Access Data)的條款[10]。研究人員受NIH核准後,方能將NIH控制近用的資料,應用於第二次研究(secondary research)[11]。由NIH資料近用委員會(Data Access Committee)審查,研究員近用資料並須遵守基於研究使用控制近用資料的條款[12]。另,基因摘要結果(Genomic Summary Results,以下簡稱GSR)隸屬於NIH政策[13],並依據GDS政策目的,將GSR定義為由研究者提供的摘要統計(summary statistics),非敏感性的資料列入NIH指定的資料庫中[14]。換言之,NIH以對控制近用資料的應用核准,在資料之限制近用與科學發展間,取得平衡。 為回應COVID-19,加速治療與疫苗的研發,NIH的資料共享與管理政策,緩解全球科學社群開放共享科學資料的需求,該政策並建立資料共享為研究過程的基礎成分[15]。綜上所論,將資料共享內化於研究過程中,有助於全球同步更新研究的進程,共同面對全人類之科學挑戰。 [1] NATIONAL SCIENCE AND TECHNOLOGY COUNCIL, COMMITTEE ON SCIENCE, SUBCOMMITEE ON INTERNATIONAL ISSUES, INTERAGENCY WORKING GROUP ON OPEN DATA SHARING POLICY, Principles For Promoting Access To Federal Government-Supported Scientific Data And Research Findings Through International Scientific Cooperation (2016), 1, 整理自Principles, at 5-8, https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/NSTC/iwgodsp_principles_0.pdf (last visited December 14, 2020). [2]About Us, Welcome to NIH Office of Science Policy, NIH National Institutes of Health Office of Science Policy, https://osp.od.nih.gov/about-us/ (last visited December 7, 2020). [3]NIH Data Management and Sharing Activities Related to Public Access and Open Science, NIH National Institutes of Health Office of Science Policy, https://osp.od.nih.gov/scientific-sharing/nih-data-management-and-sharing-activities-related-to-public-access-and-open-science/ (last visited December 10, 2020). [4]Final NIH Policy for Data Management and Sharing, NIH National Institutes of Health Office of Extramural Research, Office of The Director, National Institutes of Health (OD), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-013.html (last visited December 11, 2020). [5]Final NIH Policy for Data Management and Sharing, NIH National Institutes of Health Office of Extramural Research, Office of The Director, National Institutes of Health (OD), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-013.html (last visited December 12, 2020). [6]Supplemental Information to the NIH Policy for Data Management and Sharing: Elements of an NIH Data Management and Sharing Plan, Office of The Director, National Institutes of Health (OD), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-014.html (last visited December 13, 2020). [7]資料庫列表請參見以下網址:Open Domain-Specific Data Sharing Repositories, NIH National Library of Medicine, https://www.nlm.nih.gov/NIHbmic/domain_specific_repositories.html (last visited December 24, 2020). [8]Supplemental Information to the NIH Policy for Data Management and Sharing: Selecting a Repository for Data Resulting from NIH-Supported Research, Office of The Director, National Institutes of Health (OD), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-016.html (last visited December 13, 2020). [9]NIH Genomic Data Sharing, National Institutes of Health Office of Science Policy, https://osp.od.nih.gov/scientific-sharing/genomic-data-sharing/ (last visited December 15, 2020). [10]NIH Genomic Data Sharing Policy, National Institutes of Health (NIH), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-14-124.html (last visited December 17, 2020). [11]NIH Genomic Data Sharing Policy, National Institutes of Health (NIH), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-14-124.html (last visited December 17, 2020). [12]id. [13]NIH National Institutes of Health Turning Discovery into Health, Responsible Use of Human Genomic Data An Informational Resource, 1, at 6, https://osp.od.nih.gov/wp-content/uploads/Responsible_Use_of_Human_Genomic_Data_Informational_Resource.pdf (last visited December 17, 2020). [14]Update to NIH Management of Genomic Summary Results Access, National Institutes of Health (NIH), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-19-023.html (last visited December 17, 2020). [15]Francis S. Collins, Statement on Final NIH Policy for Data Management and Sharing, National Institutes of Health Turning Discovery Into Health, https://www.nih.gov/about-nih/who-we-are/nih-director/statements/statement-final-nih-policy-data-management-sharing (last visited December 14, 2020).
美國通過《非自願私密影像移除法》 以遏止利用AI深偽技術之性犯罪2025年5月19日美國總統川普簽署《非自願私密影像移除法》(Tools to Address Known Exploitation by Immobilizing Technological Deepfakes on Websites and Networks Act, TAKE IT DOWN Act),該法散播未經同意之親密影像,如深偽色情(deepfake porn)和報復性色情(revenge porn)視為犯罪行為。 長久以來非自願私密影像(Non-Consensual Intimate Image, NCII)所造成的傷害一直無法被有效處理,AI深偽技術出現之後讓問題變得更加複雜。美國目前僅有20個州對深偽影像設有專法,但各州對 NCII 的定義、刑責與處理方式差異甚大,受害者亦難以在第一時間快速將影像移除,導致二次創傷。 為解決前述問題,共和黨與民主黨展現高度共識,眾議院於2025年4月28日以409票同意、2票反對,壓倒性通過《非自願私密影像移除法》,並於同年5月19日獲川普總統簽署生效,此為眾議院首部管理人工智慧引發危害的重大立法。 《非自願私密影像移除法》重點與相關討論整理如下。 一、散布未經同意的私密影像屬刑事犯罪 依據《非自願私密影像移除法》,任何人若透過互動式電腦服務(interactive computer service)故意揭露或威脅散布可辨識個人之親密影像即構成刑事犯罪。親密影像包含真實私密影像(Authentic intimate visual depictions)或數位偽造影像(Digital forgeries)兩種情形,後者係指透過軟體、機器學習、人工智慧,或任何其他電腦產生或技術方式所創建之親密影像,包括改編、修改、操弄或變造真實影像,且從整體上來看,一般人難以與真實影像區分者。 二、受規範平台(covered platforms)應即時協助受害者移除相關影像 受規範平台係指係向公眾提供服務之網站、線上服務或行動應用程式,且該服務主要是提供一個平台,讓用戶得以分享其自行產製之內容(user-generated content),如訊息、影像、音訊、遊戲等;若該服務涉及發布、策劃、託管或提供未經同意的私密影像,亦屬本法所規範之平台。 受規範平台應自《非自願私密影像移除法》頒布日起一年內,建立一套機制供受害者或其代理人申請移除未經同意散布的私密影像。平台在收到移除請求後,應於48小時內移除該影像,並在合理範圍內努力搜尋並刪除所有明顯為該影像之複製品。若平台未能遵守此一規範,會被視為違反《聯邦貿易委員會法》(Federal Trade Commission Act)所定義之「不公平或欺騙性商業行為」,並適用該法的相關處罰機制,例如民事懲罰(civil penalty)等。 三、執法單位是否能有效執行是關鍵 《非自願私密影像移除法》授權聯邦貿易委員會(Federal Trade Commission, FTC)作為執法單位,然而由於川普政府近期大幅刪減聯邦機構的開銷與人力,FTC能否在48小時內移除相關私密影像備受質疑;亦有論者擔憂這項機制被濫用,恐成為政府打壓言論自由的政治工具,川普總統即公開表示他會利用這部法律來審查批評者的言論。此外,《非自願私密影像移除法》未設立反濫用條款,任何人都可要求平台刪除影像內容,加上平台有時間壓力可能會預防性刪除內容而非實質審查,形同變相限縮言論自由的空間。 《非自願私密影像移除法》是一部試圖回應數位性暴力與AI深偽技術新興威脅的里程碑式立法,反映出立法者對於保障隱私與防止科技濫用的高度共識。然而,該法利益良善但仍需面臨現實端的檢驗,能否公正且有效率的執法將成為成敗的關鍵。
德州法院判美大藥廠默克賠償2.53億一名美國德州男子由於服用止痛藥偉克適 (Vioxx) 不幸喪命後,其遺孀向法院控告全美第三大藥廠默克 (Merck & Co.) 並要求索賠。美國德州地方法院本 (8) 月 19 日判決默克應賠償 2.53 億美元,默克決定提出上訴。 根據醫學研究報告顯示,長期使用偉克適的病人發生心臟病、中風的機會將相對提高一倍, 2004 年 9 月默克藥廠已宣布回收全球市場的偉克適藥品。 59 歲德州男子 Robert Ernst 原為馬拉松選手,因肌腱炎問題服用偉克適長達 8 個月後, 2001 年心臟病死亡,經解剖後發現死因為心律不整。其遺孀向法院控告默克藥廠,認為導致其丈夫死亡主要因素,是藥廠隱瞞偉克適有致命危險性此點過失,並指出默克為了與勁敵輝瑞 (Pfizer Inc.) 的同類產品 Celebrex 競爭,急於推出偉克適上市,卻未先進行適當的安全測試,對於該藥品可能引發的心臟問題,也以輕描淡寫方式處理,因此藥廠應該負擔全責。 德州法院陪審團做出判決,認為默克藥廠應對 Ernst 死亡負擔責任,給付 2400 萬美元的損害賠償,以及 2.29 億美元的懲罰性賠償。默克藥廠的委任律師表示,將繼續提出上訴。 Miller Tabak & Co. 醫療保健類股策略師 LesFuntleyder 表示,這項判決會鼓勵更多人提出控告,時間將長達 10 年。
英國發布人工智慧網路資安實務守則英國政府於2025年1月31日發布「人工智慧網路資安實務守則」(Code of Practice for the Cyber Security of AI,以下簡稱「實務守則」),目的是提供人工智慧(AI)系統的網路資安指引。該實務守則為英國參考國際上主要標準、規範後所訂定之自願性指引,以期降低人工智慧所面臨的網路資安風險,並促使人工智慧系統開發者與供應商落實基本的資安措施,以確保人工智慧系統的安性和可靠性。 由於人工智慧系統在功能與運作模式上與傳統網路架構及軟體有明顯的不同,因此產生新的資安風險,主要包含以下: 1. 資料投毒(Data Poisoning):在AI系統的訓練資料中蓄意加入有害或錯誤的資料,影響模型訓練結果,導致人工智慧系統產出錯誤推論或決策。 2. 模型混淆(Model Obfuscation):攻擊者有意識地隱藏或掩飾AI模型的內部運作特徵與行為,以增加系統漏洞、引發混亂或防礙資安管理,可能導致AI系統的安全性與穩定性受損。 3. 輸入間接指令(Indirect Prompt Injection):藉由輸入經精心設計的指令,使人工智慧系統的產出未預期、錯誤或是有害的結果。 為了提升實務守則可操作性,實務守則涵蓋了人工智慧生命週期的各階段,並針對相關角色提出指導。角色界定如下: 1. 人工智慧系統開發者(Developers):負責設計和建立人工智慧系統的個人或組織。 2. 人工智慧系統供應鏈(Supply chain):涵蓋人工智慧系統開發、部署、營運過程中的的所有相關個人和組織。 實務守則希望上述角色能夠參考以下資安原則,以確保人工智慧系統的安全性與可靠性: 1. 風險評估(Risk Assessment):識別、分析和減輕人工智慧系統安全性或功能的潛在威脅的過程。 2. 資料管理(Data management):確保AI系統整個資料生命週期中的資料安全及有效利用,並採取完善管理措施。 3. 模型安全(Model Security):在模型訓練、部署和使用階段,均應符合當時的技術安全標準。 4. 供應鏈安全(Supply chain security):確保AI系統供應鏈中所有利益相關方落實適當的安全措施。 「人工智慧網路資安實務守則」藉由清晰且全面的指導方針,期望各角色能有效落實AI系統安全管控,促進人工智慧技術在網路環境中的安全性與穩健發展。