日本針對國外職業電競選手核發娛樂類簽證

日本近年來對於線上遊戲對戰之電子競技活動的觀戰人數逐漸上升,而由於職業電競選手在赴日參加比賽時,會因為獎金收入而面臨申請簽證上的困擾,為了能更有效吸引世界一流選手前日本參賽,實有必要對相關行政程序進行修正。

  而根據日本權威經財經媒體「日本經濟新聞」之報導,日本法務省將針對以參加線上遊戲比賽賺取獎金為業的電子競技選手,在入境日本以核發「娛樂類簽證」之方式解決前揭問題,同時透過審查國外選手在母國參與電競活動的實際成績,以防止出現利用此漏洞不法滯留日本之問題。

  對於法務省此項決定,日本電玩遊戲相關媒體多以「電競選手待遇將比照運動選手」為題進行報導。然而經查日本法務省針對外國人之入境簽證,依其入境之目的區分為高度專門職、教授教育、藝術文化、宗教、採訪、經營、留學等十六種,而職業運動員簽證事實上並非單一獨立類別,而係與歌唱、舞蹈、演奏、電影製作、商業攝影、商業錄音等共通歸類為「娛樂類簽證」之下,因此日本法務省此一作法是否果真代表在簽證核發一事,已將職業電競選手視為職業運動員,尚難有具體結論。

「本文同步刊登於TIPS網站(https://www.tips.org.tw)」

相關連結
※ 日本針對國外職業電競選手核發娛樂類簽證, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7543&no=64&tp=1 (最後瀏覽日:2026/01/27)
引註此篇文章
你可能還會想看
RFID應用與相關法制問題研析-個人資料在商業應用上的界限

南韓個資保護委員會發布人工智慧(AI)開發與服務處理公開個人資料指引

南韓個資保護委員會(Personal Information Protection Commission, PIPC)於2024年7月18日發布《人工智慧(AI)開發與服務處理公開個人資料指引》(인공지능(AI) 개발·서비스를 위한 공개된 개인정보 처리 안내서)(以下簡稱指引)。該指引針對AI開發與服務處理的公開個人資料(下稱個資)制定了新的處理標準,以確保這些資料在法律上合規,且在使用過程中有效保護用戶隱私。 在AI開發及服務的過程中,會使用大量從網路上收集的公開資料,這些公開資料可能包含地址、唯一識別資訊(unique identifiable information, UII)、信用卡號等個資。這些公開的個資是指任意人可藉由網路抓取技術自公開來源合法存取的個資,內容不限於個資主體自行公開的資料,還包括法律規定公開的個資、出版物和廣播媒體中包含的個資等。由於公開資料眾多,在現實中很難在處理這些公開個資以進行AI訓練之前,取得每個個資主體的單獨同意及授權,同時,南韓對於處理這些公開個資的現行法律基礎並不明確。 為解決上述問題,PIPC制定了該指引,確認了蒐集及利用公開個資的法律基礎,並為AI開發者和服務提供者提供適用的安全措施,進而最小化隱私問題及消除法律不確定性。此外,在指引的制定過程中,PIPC更參考歐盟、美國和其他主要國家的做法,期以建立在全球趨勢下可國際互通的標準。 指引的核心內容主要可分為三大部分,第一部分:應用正當利益概念;第二部分:建議的安全措施及保障個資主體權利的方法;及第三部分:促進開發AI產品或服務的企業,在開發及使用AI技術時,注意可信任性。 針對第一部分,指引中指出,只有在符合個人資料保護法(Personal Information Protection Act, PIPA)的目的(第1條)、原則(第3條)及個資主體權利(第4條)規定範圍內,並滿足正當利益條款(第15條)的合法基礎下,才允許蒐集和使用公開個資,並且需滿足以下三個要求:1.目的正當性:確保資料處理者有正當的理由處理個資,例如開發AI模型以支持醫療診斷或進行信用評級等。2.資料處理的必要性:確保所蒐集和利用的公開資料是必要且適當的。3.相關利益評估:確保資料處理者的正當利益明顯超越個資主體的權利,並採取措施保障個資主體的權利不被侵犯。 而第二部分則可區分為技術防護措施、管理和組織防護措施及尊重個資主體權利規定,其中,技術防護措施包括:檢查訓練資料來源、預防個資洩露(例如刪除或去識別化)、安全存儲及管理個資等;管理和組織防護措施包括:制定蒐集和使用訓練資料的標準,進行隱私衝擊影響評估(PIA),運營AI隱私紅隊等;尊重個資主體權利規定包括:將公開資料蒐集情形及主要來源納入隱私政策,保障個資主體的權利。 最後,在第三部分中,指引建議AI企業組建專門的AI隱私團隊,並培養隱私長(Chief Privacy Officers, CPOs)來評估指引中的要求。此外,指引亦呼籲企業定期監控技術重大變化及資料外洩風險,並制定及實施補救措施。 該指引後續將根據PIPA法規修訂、AI技術發展及國際規範動向持續更新,並透過事前適當性審查制、監管沙盒等途徑與AI企業持續溝通,並密切關注技術進步及市場情況,進而推動PIPA的現代化。

國際標準化組織(ISO)在COP29上發布全球ESG原則實施框架

.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 在2024年11月11日至22日舉辦第29屆聯合國氣候變化大會(COP29)上,國際標準化組織(ISO)發佈全球第一部ESG國際標準:ISO ESG IWA 48《實施環境、社會和治理(ESG)原則框架》(Framework for implementing environmental, social and governance (ESG) principles)(簡稱為IWA 48:2024),為全球各地區、不同規模的企業提供統一管理標準,同時提供實施指引和行動範例,應對永續發展挑戰。 IWA 48有以下幾大重點: 1. ESG原則和實踐(Principles and practices in ESG):強調誠信、成效、公平、風險與機會、證據、持續改善等原則。 1.1風險與機會:風險跟機會應由高階管理階層從組織整體評估,因風險可能同時伴隨機會;同時,管理層面要運用科學方法及可靠數據紀錄,評估與建立行動方案與追蹤管控。 1.2負責及公開透明:在ESG原則為關鍵要素,清楚揭露經營績效和永續資訊,不僅可增強利害關係人信心,也有助於保護組織商譽。 1.3利害關係人參與:組織應重視內、外部利害關係人的意見,如員工、股東、客戶、供應商等;舉例來說,組織落實資訊公開,並藉由問卷或會議形式,請利害關係人回饋期望或意見。 1.4重大主題:組織評估內外部之營運狀況所可能遭遇挑戰,且考量利害關係人回饋、產業特性,進而辨識各項議題之衝擊程度與關聯性,及排定優先順序來制訂行動方案。 1.5關鍵績效指標(KPI)評估:針對各項重大主題依可靠數據紀錄,進而運用量化或質化手段,設定短期、中期和長期之具體目標。 2. 環境(Environmental):評估組織營運活動與環境變化之相互關係,因此須要根據科學方法建立基準與制訂目標,確保營運過程能有效執行策略。 3. 社會(Social):主要關注組織如何承擔社會責任,推動具有社會價值行為和政策,除遵循當地勞動法令外,可額外提供福利或照顧措施,如組織接納各國人民,公平方式進行面試,培訓應保障不會發生任何歧視情事。 4. 治理(Governance):董事會或管理階層要明確公告組織永續政策與要求,並建立道德規範,如誠信經營,法令遵循、風險管理等,尤其鑑別永續相關風險,如當地法令異動、環境變化,更要與利害關係人保持溝通與合作,進而評估組織政策與執行方向,再依據營運需求調整。 5. 合規性和一致性(Compliance and conformity):組織可採用第三方查(驗)證方式,協助組織評估有無符合當地法令、達到ESG要求標準,及組織對於ESG之承諾。 6. 報告(Reporting):組織可公開揭露永續資訊,如永續報告書或年報等;再者,組織應確保揭露內容之準確、清楚與可靠,並正面及負面資訊均清楚完整揭露,以讓利害關係人了解狀況與趨勢。 7. 持續改善(Continual improvement):透過關鍵績效指標(KPI)檢核,定期確認組織達成永續目標狀況,如有未達預期情事者,應落實根因分析、制訂矯正預防措施,並予以揭露與執行改善,以確保能達到長期目標。

歐洲專利局發布人工智慧與機器學習專利審查指南正式生效

  歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。   在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。   其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵:   (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。   (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。   在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。   近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」

TOP