Connected Industries為日本產業的未來願景,透過人、機器與科技的跨界連接,創造出全新附加價值的產業社會,以達到Society5.0理想目標。例如,物與物的連接形成物聯網(IoT)、人與機器合作拓展智慧與創新、跨國企業合作解決全球議題、跨世代的人與人連繫傳承智慧與技術、生產者與消費者接觸解決商業與社會問題等。
隨著第四次產業革命到來,IoT、大數據及 AI人工製會等技術革新,日本藉由高科技、技術人才及應變能力等優勢與數據技術相結合,目標是邁向以人類為中心、解決問題的新產業社會。Connected Industries的三大支柱分別為:
一、新數據社會(New Digital Society)
消除人與機械系統的對立,實現全新的數位化社會。解決新興科學技術如AI及機器人運用上的困難,並積極活用該技術幫助並強化人類解決問題的能力。
二、多層次合作(Multilevel Cooperation)
區域、世界及全球未來面臨複雜的挑戰,必須透過企業間、產業間及國與國間的連繫合作解決課題。
三、人力資源發展(Human Resource Development)
以人類為中心做思考,積極推展數據技術的人才養成,邁向智慧與技術的數據化時代。
本文為「經濟部產業技術司科技專案成果」
美國衛生及公共服務部(Department of Health and Human Services, 下稱HHS)轄下的公民權利辦公室(Office for Civil Right, 下稱OCR)在2019年11月27日,正式對Sentara醫療機構處以217萬美元行政罰,主因該機構違反《健康保險可攜與責任法》(Health Insurance Portability and Accountability Act, 下稱HIPAA)的醫療個資外洩通知義務。 HIPAA是美國有關醫療個資管理的主要規範,依據HIPAA第164.400條以下「違反通知規則」(Breach Notification Rule)規定,當超過500位病患的「受保護健康資訊」(Protected Health Information, 下稱PHI)遭受不當使用或被外洩時,除應通知受害人外,還必須立即告知HHS以及在當地知名媒體發布新聞。而OCR主要負責檢查受規範機構,是否確實執行HIPAA隱私、安全和違反通知規則。 而在2017年4月,HHS收到指控Sentara將含有病患姓名、帳號、就診日期等涉及PHI的帳單發送到錯誤地址,造成557名病患個資外洩。Sentara卻認為該帳單內容未含有病患病歷、治療資訊或其他診斷紀錄,且僅有8人被影響,並非HIPAA應進行個資外洩通知義務之範疇,故不依規定程序通報HHS。不過OCR認為依HIPAA第160.103條規定,PHI包含病史、保險資訊、就醫紀錄(含日期)、身心健康狀態等可識別個人之健康資訊。因此認為Sentara確實違反個資外洩通知義務,予以罰款並命檢討改善。 Sentara醫療機構服務範圍橫跨美國維吉尼亞州(Virginia)和北卡羅來納州(North Carolina),共有12家急性照護醫院、10家護理中心和3家照護機構,為美國最具知名的大型非營利醫療機構之一。這次重罰也告誡國內醫療機構當發生敏感性醫療個資外洩時應從嚴判斷,以避免民眾對醫療照護單位失去信任,確保國內醫療機構體系應恪遵HIPAA規範。
軟體安全性缺失成為買賣標的瑞士的網路安全公司WSLabi於2007年7月9日宣佈一項訊息,未來將在線上公開交易或交換一些軟體的安全性漏洞和弱點予軟體相關研究人員、安全代理商和軟體公司,價格從數百美元至數萬美元不等。而此意謂拍賣軟體瑕疵的新興市場即將被打開。 WSLabi公開拍賣軟體弱點與漏洞的作法引起了很大的爭論。以往軟體安全業者於發現軟體的弱點後,會與軟體開發者合作修補安全性弱點和漏洞,待修補完成後再公開宣佈修補軟體安全性弱點之相關訊息。但該公司的新作法將導致軟體公司未來可能因為無法及時修補弱點而商譽受損。因此該項計畫雖尚未實行,卻引起了不同看法的爭辯:支持者表示,此一計畫將有助於改善軟體弱點及安全漏洞的問題,並可鼓勵對於軟體的弱點的深入研究;然反對者卻認為,如果軟體的弱點和安全漏洞因而落入有心人的手中,利用於犯罪或幫助他人犯罪,將會對資訊安全形成極大威脅。再者,把其他公司開發的軟體弱點在市場上交易,可能也會引發道德與合法性的問題。 WSLabi於瞭解這項做法可能引起侵害著作權(重製、散布、販賣軟體等行為)、營業秘密與犯罪防治等法律上的爭議及國家安全的問題後表示,他們將會審慎地過濾選擇買主,不會將研究之結果出售予犯罪者或敵國政府。雖然如此,他們的說法仍引起質疑,畢竟判斷買主是否為善意或確定身份並非易事。
美國國家標準暨技術研究院規劃建立「人工智慧風險管理框架」,並徵詢公眾對於該框架之意見美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)為管理人工智慧對於個人、組織以及社會所帶來之風險,於2021年7月29日提出將建立「人工智慧風險管理框架」(Artificial Intelligence Risk Management Framework, AI RMF)之規畫並徵詢公眾意見,截止日為9月15日,並預計於10月發布正式報告。 依照NIST說明,公眾所建議之人工智慧風險管理框架,可促進人工智慧之可信賴性,其中包含如何應對並解決人工智慧於設計、發展及使用過程中所遭遇之「精確度」(accuracy)、「可解釋性」(explainability)、「偏見」(bias)等議題。此外,上開管理框架預計為非強制性、供企業自願性使用於人工智慧設計、發展、使用、衡量及評估之人工智慧標準。 依現有公眾意見徵詢結果,其中DeepMind公司建議於人工智慧設計初期,必須預先構思整體系統之假設是否符合真正社會因果關係。舉例言之,當設計一套可預測民眾健保需求程度之系統時,如輸入參數僅考量民眾於醫療上的花費,將使僅有可負擔較高醫療費用之民眾被歸類為健保需求程度較高者,從而導致健保制度排擠經濟負擔程度較差之公民,故在設計系統時,應從預先設定之假設事實反面(counter-factual)思考並驗證是否會產生誤差或公平性之問題(例如預先思考並驗證「醫療費用支出較低之民眾是否即可被正確歸類為健保需求度低之民眾」)。惟進行上述驗證需要大量社會資料,因此DeepMind也建議NIST應建立相關機制,使這些社會資料可以被蒐集、使用。 此外,亦有民眾建議管理框架應有明確之衡量方法以及數值指標,以供工程界遵循。同時鑒於人工智慧發展極為快速,未來可能有不同於以往之人工智慧類型出現,故亦建議NIST應思考如何在「建構一套完整且詳細之人工智慧治理框架」與「保持人工智慧治理框架之彈性與靈活性」之間取得平衡。 最後,目前也有許多徵詢意見指出,許多人工智慧治理之目標會相互衝突。舉例言之,當NIST要求人工智慧系統應符合可解釋性,則人工智慧公司勢必需要經常抽取人工智慧系統中之「數據軌跡」(audit logs),惟數據軌跡可能被認為是使用者之個人資料,因此如何平衡或完善不同治理框架下之目標,為未來應持續關注之議題。