澳洲政府發布「國家 AI 計畫」 將採用科技中立的AI治理模式

澳洲工業、科學及資源部(Department of Industry, Science and Resources)於2025年12月2日發布「國家AI計畫」(National AI Plan),擘劃了澳洲至2030年的AI發展藍圖,將「掌握機遇」、「普及效益」與「確保人民安全」列為三大發展方向。該計畫將透過基礎建設投資、人才培育、產業支持,以及強化監管能力等途徑,打造一個更具競爭力、包容性與安全性的 AI 生態系統。

國家AI計畫的另一個重點在於,澳洲政府打算透過現有的法律監管架構治理AI,而不另立AI專法。此舉是回應澳洲生產力委員會(Productivity Commission)於8月提出之建言:政府在推動創新與訂定規範時必須取得平衡,應暫緩推動「高風險 AI 的強制護欄(mandatory guardrails)」,僅有在現行制度無法處理AI衍生之危害時,才有必要考慮制定 AI 專法。

據此,國家AI計畫指出,面對AI可能造成的危害,現有制度已有辦法進行處理。例如面對使用AI產品或服務的爭議,可依循《消費者保護法》(Australian Consumer Law)取得權利保障;AI產品或服務的風險危害,亦可透過《線上安全法》(Online Safety Act 2021)授權,制定可強制執行的產業守則(enforceable industry codes)來應對。澳洲政府未來也將推動《隱私法》(Privacy Act 1988)修法,意欲在「保護個人資訊」與「允許資訊被使用及分享」之間取得適當平衡。

同時,由於採用分散式立法的關係,澳洲特別成立「AI 安全研究院」(Australian AI Safety Institute, AISI),以強化政府因應 AI 相關風險與危害的能力。AISI將協助政府部門內部進行監測、分析並共享資訊,使部門間能採取即時且一致的治理政策。

澳洲政府曾在2024年9月研議針對高風險AI進行專門的監管,但因擔心過度立法恐扼殺AI發展轉而採用「科技中立」的監管方式,以既有法律架構為基礎推動AI治理。此與歐盟的AI治理邏輯大相逕庭,未來是否會出現現行制度無法處理之AI危害,抑或採用現行法制並進行微調的方式即可因應,值得持續觀察。

相關連結
你可能會想參加
※ 澳洲政府發布「國家 AI 計畫」 將採用科技中立的AI治理模式, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9431&no=0&tp=1 (最後瀏覽日:2025/12/27)
引註此篇文章
你可能還會想看
何謂德國「中小企業創新核心計畫」(Zentrales Innovationsprogramm Mittelstand)?

  中小企業創新核心計畫(Zentrales Innovationsprogramm Mittelstand ,以下簡稱ZIM)是一項覆蓋全國範圍、不限制技術領域和行業的補助計畫,補助對象除中小企業外,還包括與之合作的研究機構。該計畫整合過往其他許多補助計畫,德國聯邦經濟與能源部於2015年1月公佈了最新的ZIM計畫實施方針,擴大受補助中小企業的範圍,且提高資助資金的數額,將對企業補助的最高數額從35萬提高到38萬,對研究機構補助的最高數額從17.5萬提高到19萬歐元,以持續提升德國中小企業的創新能力與競爭力;企業與合作研究機構可以在補助的架構下針對先進技術研發獲得資金,研發主題不限,重點在於創新內容與市場價值。   ZIM計畫中的中小企業為員工人數不超過499人,同時年營業額低於5000萬歐元或資產負債表總額低於4300萬歐元的企業。在此基礎上,ZIM計畫中分為以下三種補助類型: 1.ZIM個人計畫(ZIM-Einzelproejkte):補助個別經營企業的研發計畫。 2.ZIM合作計畫(ZIM-Kooperationsprojekte):補助兩個或兩個以上的企業或研發機構之共同研發計畫。 3.ZIM網狀型合作計畫(ZIM-Kooperationsnetzwerke):補助在創新網狀架構下至少六個中小企業合作之全面性研發計畫。

國內藥廠發起外銷策略聯盟

  經濟部工業局將協助國內製藥業成立「藥廠外銷策略聯盟」,集合藥界力量共同打開外銷市場,希望至少推動十幾個學名藥外銷,而明年外銷產值可達 20 億元,每年成長 20 %,五年後外銷產值可到 100 億元;主要鎖定美、日、歐為主的 PIC/S (國際藥品稽查協合會)市場,由熟悉市場的專家來協助製藥界一起拓展海外市場,目前已有近十家業者有意加入此聯盟。   由於過去國內藥廠都主攻健保市場,不過未來成長有限,國內藥廠必須積極拓展海外市場,才可以保持競爭力。今年 4 月,日本實施新藥事法後,採取產銷分離,國內製藥業者有機會爭取到代工的機會,工業局將協助國內業者爭取日本代工注射劑、口服液等機會,以及在台採購原料藥和其他藥劑。以歐盟為主的 PIC/S 市場,近年會員增多,美國 FDA 也有意加入,國內藥廠如能爭取成為會員,可以降低藥廠重複檢驗的成本,有利拓銷海外市場。   國內藥廠拓銷海外市場已漸有成績,如優良藥廠和永光化學合作避孕藥 GyMiso ,與歐洲 HRA 藥廠合作進軍歐盟市場,並順利通過 PIC/S 查核,取得產品製造許可。生達製藥和永信製藥都在美國設廠,努力耕耘美國市場十年後,已開始賺錢,不過仍希望和國內業者合作。南光則已有和日本代工非 PVC 材質注射劑的經驗。

美國眾議院提出軟體法案 為醫療APP提供規範方向

  美國眾議院於2013/10/22提出法案(Sensible Oversight for Technology which Advances Regulatory Efficiency Act of 2013,簡稱Software Act,HR3303),擬限制食品藥物管理局 (Food and Drug Administration,FDA)在與健康醫療有關軟體制訂規範的權限。   根據美國聯邦法典第21編第301條以下(21 U.S.C. § 301)規定,FDA對醫療器材擁有法定職權進行規範。FDA近來亦開始嘗試對醫療軟體APP制訂規範,包括附有生物識別裝置(如血壓監視器和照相機)、讓消費者可以蒐集資料、供醫生可遠距離進行部分檢測行為的行動設備。這項法案的支持者以為,FDA此舉將阻礙醫療創新,故擬透過Software Act界定FDA的規管權限。   這項法案主要增加了3個定義:醫療軟體(medical software)、臨床軟體(clinical software)和健康軟體(health software)。醫療軟體仍在FDA的管轄範圍內,但其他2類則否。惟本法案只確立FDA無權對資料蒐集類軟體進行規範,但對此類軟體得使用的範圍、或是否需另授與執照等議題並沒有著墨。提案者以為,後續應由總統和國會應共同努力,對臨床軟體和健康軟體制訂和頒佈立法,建立以風險為基礎的管制架構,降低管制負擔,促進病患安全與醫療創新。   所謂醫療軟體,指涉及改變身體(changing the body)的軟體。包括意圖透過市場銷售、供消費者使用,直接改變人體結構或功能的軟體;或,意圖透過市場銷售、供消費者使用,以提供臨床醫療行為建議的藥物、器材或治療疾病的程序;或其他不需要健康照護提供者參與的情境,但實施後會直接改變人體結構或功能的藥物、器材或程序。   僅從人體蒐集資料者,被歸類為臨床軟體(由醫療院所、健康照護提供者裝設)或健康軟體(由民眾自為)。兩者的區別,主要在由誰提供並裝設。   所謂臨床軟體,是醫療院所或健康照護提供者在提供服務時使用,提供臨床決策支援目的之軟體,包括抓取、分析、改變或呈現病患或民眾臨床數據相關的硬體和流程,但不會直接改變人體結構或任何功能。   根據Research2Guidance於2013年2月發表的調查報告(Mobile Health Market Report 2013-2017),目前在APPLE的APP Store上已有97,000個行動健康類的APP程式,有3百萬個免費、30萬個付費下載使用者。15%的APP是專門設計給健康照護提供者;與去年相比,已有超過6成的醫生使用平板提供服務。預測消費者使用智慧型手機上的醫療APP的數量,在2015年將達5億。這個法案的出現,外界以為,提供了科技創新者較明確的規範指引,允許醫療的進步和創新。

美國國家標準暨技術研究院發布「全球AI安全機構合作策略願景目標」,期能推動全球AI安全合作

美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)於2024年5月21日提出「全球AI安全機構合作策略願景目標」(The United States Artificial Intelligence Safety Institute: Vision, Mission, and Strategic Goals,下稱本策略願景),美國商務部(Department of Commerce)亦於2024年參與AI首爾峰會(AI Seoul Summit)期間對外揭示本策略願景,期能與其他國家攜手打造安全、可靠且可信賴之AI生態系。 由於AI可信賴與否往往取決於安全性,NIST指出當前AI安全所面臨的挑戰包含:一、欠缺對先進AI之標準化衡量指標;二、風險測試、評估、驗證及確效(Test, Evaluation, Validation, and Verification, TEVV)方法不健全;三、欠缺對AI建模後模型架構與模型表現間因果關係的了解;四、產業、公民社會、國內外參與者等在實踐AI安全一事上合作程度極為有限。 為因應上述挑戰並促進AI創新,NIST在本策略願景中擬定以下三大戰略目標:(1)推動AI安全科學發展:為建立安全準則與工具進行技術合作研究,並預先部署TEVV方法,以利評估先進AI模型之潛在風險與應對措施;(2)推展AI安全實務作法:制定並發布不同領域AI風險管理之相關準則與指標,以達到負責任設計、開發、部署與應用AI模型與系統之目的;(3)支持AI安全合作:促進各界採用前述安全準則、工具或指標,並推動全球合作,以發展國際通用的AI安全風險應對機制。

TOP