2025/03/20
日本內閣府公開徵集「研究安全和風險管理系統開發支援計畫」,加強研究安全保障
日本內閣府公開徵集「研究安全和風險管理系統開發支援計畫」,加強研究安全保障
資訊工業策進會科技法律研究所
2025年3月10日
壹、事件摘要
內閣府科學技術創新推進事務局(科学技術・イノベーション推進事務局),於2025年2月19日發布公告,自2025年2月19日至3月24日公開徵集國內負責經濟安全重要技術的補助機關和研究機構加入「研究安全和風險管理系統開發支援計畫」 [1](研究セキュリティ・インテグリティに関するリスクマネジメント体制整備支援事業,下簡稱研究安全計畫),以加強研究安全之保障。
貳、重點說明
日本曾發生研究者在不知情的情形下與北韓研究者共著論文而危害研究安全事件,根據日本經濟新聞2024年11月28日報導,自2016年底北韓受到聯合國加強制裁以來,共有八篇北韓研究機構的國際共著論文發表,包含東京大學、名古屋大學等日本五所大學的研究者皆在共同著作者之列,雖研究者皆表示與北韓無聯繫,但此行為仍可能違反聯合國制裁規定,且一名涉及本事件的研究者在論文發表後,仍被任命為國內主導研究計畫的主持人,負責百億日圓預算及先進技術的管理,顯示日本研究安全管理問題[2]。
為避免類似事件發生及提升日本科技實力,以及配合G7國家關於研究安全與誠信的政策,內閣府公開徵集負責經濟安全重要技術的補助機關和研究機構加入研究安全計畫。該計畫將蒐集與分析國際合作研究所需的公開資訊,並整合後於2025年出版「研究安全與誠信程序手冊」(RS/RI に関する手順書)。
所謂經濟安全重要技術,係指《促進特定重要技術研發及適當運用成果基本指南》(特定重要技術の研究開発の促進及びその成果の適切な活用に関する基本指針)所列,包含AI、生物技術等先進技術領域[3],內閣府將透過此計畫驗證學研機構所實施之研究安全與誠信措施是否得宜,並與學研機構分享典範實務,參考政府制定的研究安全與誠信規範,提出分析與改善方法。
研究安全計畫將支援日本國內研究機構和其他處理對經濟安全重要技術的機關,在國內外開展聯合研究時採取必要的技術外流防止措施,一方面提供分析資源,如協助分析研究人員及研究機構的公開資訊(職業經歷、其他工作以及研究資金流向等),另一方面支援實施風險管理的相關費用,並針對整體防止技術外流的風險控管體系進行評估後給予建議[4]。
研究安全計畫參與對象為補助研發之機關及領取補助進行研究開發的機構(如公立研究機構、研究開發公司、大學等),且應有足夠能力執行完整風險控管計畫。另計畫評選期間,研究機構不得有內閣府所定停止補助、停止推薦等情形[5]。
內閣府為結合國家政策與國際標準,全面提升日本在經濟安全重要技術領域的研究安全與誠信管理能力,透過分析與資金支援,協助研究機構構建完善的風險控管體系,確保研究中的技術外流防範措施得以落實。此舉不僅為日本科技實力的長期發展奠定基石,亦為維護國家經濟安全及國際信譽提供堅實保障。
參、事件評析
近年研究安全成為國際間之重要議題,為防止技術外流,各國亦有許多政策,如美國國家科學基金會(National Science Foundation, NSF)啟動「保護美國研究生態系統社群 」[6](Safeguarding the Entire Community of the U.S. Research Ecosystem, SECURE)計畫,並成立 SECURE 中心;加拿大政府公告「三機構關於敏感技術研究和關注從屬性政策指南」[7](Tri agency guidance on the Policy on Sensitive Technology Research and Affiliations of Concern, STRAC Policy)等,在如此趨勢下,日本亦開始注重研究安全之保障。
日本內閣府此次推動研究安全計畫,顯示日本政府已深刻意識到研究安全議題的迫切性與重要性。隨著全球科技競爭日益激烈,國際間的技術交流與合作頻繁,但也伴隨著技術外流、竊取敏感研究資訊等風險。尤其是北韓等受國際制裁國家,可能透過隱匿身分或間接合作的方式,取得敏感資訊,對國際社會的安全構成潛在威脅。
日本政府推動研究安全計畫,透過提供分析資源、資金支援及風險控管體系的評估建議,協助研究機構建立完善的防範機制,期望透過以上防範機制,全面提升日本在研究安全管理能力,並確保技術外流防範措施得以落實。
然而,此計畫的推動仍存在一些挑戰與考量。首先,如何在確保研究安全與維護學術自由之間取得平衡,避免過度限制造成研究自主性與創新能力的損害,將是重要課題。此外,背景審查與資訊分析機制的建置,需注意個人隱私保護,避免引發研究人員的反彈與抵制。再者,國際合作研究的審查程序若過於繁瑣,也可能影響日本研究機構與國際間的合作意願,甚至對國際學術地位造成負面影響。
因此,日本政府在推動此項政策時,應積極參考美國、加拿大等國的經驗,建立透明且具彈性的管理制度,並與國際夥伴保持密切溝通,協調一致的研究安全標準,避免孤立於國際科研社群之外。綜上所述,日本此次行動對於提升國內研究安全與誠信管理能力,並維護國家經濟安全,具有正面且積極的意義,未來仍需持續關注政策推行的成效與後續調整方向,以達成長期穩健的發展目標。
[1]〈研究セキュリティ・インテグリティに関するリスクマネジメント体制整備支援事業の公募について〉,內閣府,https://www8.cao.go.jp/cstp/kokusaiteki/integrity/kobo_r7.html (最後瀏覽日:2025/3/10)。
[2]日本経済新聞,〈東大など5大学、知らずに北朝鮮と共同研究 「寝耳に水」〉, 20254/11/28,https://www.nikkei.com/article/DGXZQOUE293WI0Z20C24A1000000/ (最後瀏覽日:2025/3/10)。
[3]〈特定重要技術の研究開発の促進及びその成果の適切な活用に関する基本指針〉,內閣府,https://www.cao.go.jp/keizai_anzen_hosho/suishinhou/doc/kihonshishin3.pdf (最後瀏覽日:2025/3/10)。
[4]〈研究セキュリティ・インテグリティに関するリスクマネジメント体制整備支援事業公募要領〉,內閣府,頁3,https://www8.cao.go.jp/cstp/kokusaiteki/integrity/kobo_r7/kobo_r7.pdf (最後瀏覽日:2025/3/10)。
[5]同前註,頁4。
[6]NSF-backed SECURE Center will support research security, international collaboration, US National Science Foundation, https://www.nsf.gov/news/nsf-backed-secure-center-will-support-research (last visited Mar. 10, 2025).
[7]Tri-agency guidance on the Policy on Sensitive Technology Research and Affiliations of Concern (STRAC Policy), Natural Sciences and Engineering Research Council of Canada, https://www.nserc-crsng.gc.ca/InterAgency-Interorganismes/RS-SR/strac-rtsap_eng.asp (last visited Mar. 10, 2025).
2025/03/19
G7第四屆資料保護與隱私圓桌會議揭示隱私保護新趨勢
G7第四屆資料保護與隱私圓桌會議揭示隱私保護新趨勢
資訊工業策進會科技法律研究所
2025年03月10日
七大工業國組織(Group of Seven,下稱G7)於2024年10月10日至11日在義大利羅馬舉辦第四屆資料保護與隱私機構圓桌會議(Data Protection and Privacy Authorities Roundtable,下稱圓桌會議),並發布「G7 DPAs公報:資料時代的隱私」(G7 DPAs’ Communiqué: Privacy in the age of data,下稱公報)[1],特別聚焦於人工智慧(AI)技術對隱私與資料保護的影響。
壹、緣起
由美國、德國、英國、法國、義大利、加拿大與日本的隱私主管機關(Data Protection and Privacy Authorities, DPAs)組成本次圓桌會議,針對數位社會中資料保護與隱私相關議題進行討論,涵蓋「基於信任的資料自由流通」(Data Free Flow with Trust, DFFT)、新興技術(Emerging technologies)、跨境執法合作(Enforcement cooperation)等三大議題。
本次公報重申,在資通訊技術主導的社會發展背景下,應以高標準來審視資料隱私,從而保障個人權益。而DPAs作為AI治理領域的關鍵角色,應確保AI技術的開發和應用既有效且負責任,同時在促進大眾對於涉及隱私與資料保護的AI技術認識與理解方面發揮重要作用[2]。此外,公報亦強調DPAs與歐盟理事會(Council of Europe, CoE)、經濟合作暨發展組織(Organisation for Economic Co-operation and Development, OECD)、亞太隱私機構(Asia Pacific Privacy Authorities, APPA)、全球隱私執行網路(Global Privacy Enforcement Network, GPEN)及全球隱私大會(Global Privacy Assembly, GPA)等國際論壇合作的重要性,並期望在推動資料保護與建立可信賴的AI技術方面作出貢獻[3]。
貳、重點說明
基於上述公報意旨,本次圓桌會議上通過《關於促進可信賴AI的資料保護機構角色的聲明》(Statement on the Role of Data Protection Authorities in Fostering Trustworthy AI)[4]、《關於AI與兒童的聲明》(Statement on AI and Children)[5]、《從跨國角度觀察降低可識別性:G7司法管轄區對匿名化、假名化與去識別化的法定及政策定義》(Reducing identifiability in cross-national perspective: Statutory and policy definitions for anonymization, pseudonymization, and de-identification in G7 jurisdictions)[6],分別說明重點如下:
一、《關於促進可信賴AI的資料保護機構角色的聲明》
繼2023年第三屆圓桌會議通過《關於生成式AI聲明》(Statement on Generative AI)[7]後,本次圓桌會議再次通過《關於促進可信賴AI的資料保護機構角色的聲明》,旨在確立管理AI技術對資料保護與隱私風險的基本原則。G7 DPAs強調許多AI技術依賴個人資料的運用,這可能引發對個人偏見及歧視、不公平等問題。此外,本聲明中還表達了擔憂對這些問題可能透過深度偽造(Deepfake)技術及假訊息擴散,進一步對社會造成更廣泛的不良影響[8]。
基於上述考量,本聲明提出以下原則,納入G7 DPAs組織管理的核心方針[9]:
1. 以人為本的方法:G7 DPAs應透過資料保護來維護個人權利與自由,並在AI技術中提供以人權為核心的觀點。
2. 現有原則的適用:G7 DPAs應審視公平性、問責性、透明性和安全性等AI治理的核心原則,並確保其適用於AI相關框架。
3. AI核心要素的監督:G7 DPAs應從專業視角出發,監督AI的開發與運作,確保其符合負責任的標準,並有效保護個人資料。
4. 問題根源的因應:G7 DPAs應在AI的開發階段(上游)和應用階段(下游)找出問題,並在問題擴大影響前採取適當措施加以解決。
5. 善用經驗:G7 DPAs應充分利用其在資料領域的豐富經驗,謹慎且有效地應對AI相關挑戰。
二、《關於AI與兒童的聲明》
鑒於AI技術發展可能對於兒童和青少年產生重大影響,G7 DPAs發布本聲明表示,由於兒童和青少年的發展階段及其對於數位隱私的瞭解、生活經驗有限,DPAs應密切監控AI對兒童和青少年的資料保護、隱私權及自由可能造成的影響程度,並透過執法、制定適合年齡的設計實務守則,以及發佈面向兒童和青少年隱私權保護實務指南,以避免AI技術導致潛在侵害兒童和青少年隱私的行為[10]。
本聲明進一步闡述,當前及潛在侵害的風險包含[11]:
1. 基於AI的決策(AI-based decision making):因AI運用透明度不足,可能使兒童及其照顧者無法獲得充足資訊,以瞭解其可能造成重大影響的決策。
2. 操縱與欺騙(Manipulation and deception):AI工具可能具有操縱性、欺騙性或能夠危害使用者情緒狀態,促使個人採取可能危害自身利益的行動。例如導入AI的玩具可能使兒童難以分辨或質疑。
3. AI模型的訓練(Training of AI models):蒐集和使用兒童個人資料來訓練AI模型,包括從公開來源爬取或透過連線裝置擷取資料,可能對兒童的隱私權造成嚴重侵害。
三、《從跨國角度觀察降低可識別性:G7司法管轄區對匿名化、假名化與去識別化的法定及政策定義》
考慮到個人資料匿名化、假名化及去識別化能促進資料的創新利用,有助於最大限度地減少隱私風險,本文件旨在整合G7成員國對於匿名化、假名化與去識別化的一致理解,針對必須降低可識別性的程度、資訊可用於識別個人的程度、減少可識別性的規定流程及技術、所產生的資訊是否被視為個人資料等要件進行整理,總結如下:
1. 去識別化(De-identification):加拿大擬議《消費者隱私保護法》(Consumer Privacy Protection Act, CPPA)、英國《2018年資料保護法》(Data Protection Act 2018, DPA)及美國《健康保險可攜性及責任法》(Health Insurance Portability and Accountability Act , HIPAA)均有去識別化相關規範。關於降低可識別性的程度,加拿大CPPA、英國DPA規定去識別化資料必須達到無法直接識別特定個人的程度;美國HIPAA則規定去識別化資料須達到無法直接或間接識別特定個人的程度。再者,關於資料去識別化的定性,加拿大CPPA、英國DPA認定去識別化資料仍被視為個人資料,然而美國HIPAA則認定去識別化資料不屬於個人資料範疇。由此可見,各國對去識別化規定仍存在顯著差異[12]。
2. 假名化(Pseudonymization):歐盟《一般資料保護規則》(General Data Protection Regulation, GDPR)及英國《一般資料保護規則》(UK GDPR)、日本《個人資料保護法》(個人情報の保護に関する法律)均有假名化相關規範。關於降低可識別性的程度,均要求假名化資料在不使用額外資訊的情況下,須達到無法直接識別特定個人的程度,但額外資訊應與假名化資料分開存放,並採取相應技術與組織措施,以確保無法重新識別特定個人,因此假名化資料仍被視為個人資料。而關於假名化程序,日本個資法明定應刪除或替換個人資料中可識別描述或符號,歐盟及英國GDPR雖未明定具體程序,但通常被認為採用類似程序[13]。
3. 匿名化(Anonymization):歐盟及英國GDPR、日本個資法及加拿大CPPA均有匿名化相關規範。關於降低可識別性的程度,均要求匿名化資料無法直接或間接識別特定個人,惟可識別性的門檻存在些微差異,如歐盟及英國GDPR要求考慮控管者或其他人「合理可能用於」識別個人的所有方式;日本個資法則規定匿名化資料之處理過程必須符合法規標準且不可逆轉。再者,上述法規均將匿名化資料視為非屬於個人資料,但仍禁止用於重新識別特定個人[14]。
參、事件評析
本次圓桌會議上發布《關於促進可信賴AI的資料保護機構角色的聲明》、《關於AI與兒童的聲明》,彰顯G7 DPAs在推動AI治理原則方面的企圖,強調在AI技術蓬勃發展的背景下,隱私保護與兒童權益應成為優先關注的議題。與此同時,我國在2024年7月15日預告《人工智慧基本法》草案,展現對AI治理的高度重視,融合美國鼓勵創新、歐盟保障人權的思維,針對AI技術的應用提出永續發展、人類自主、隱私保護、資訊安全、透明可解釋、公平不歧視、問責等七項原則,為國內AI產業與應用發展奠定穩固基礎。
此外,本次圓桌會議所發布《從跨國角度觀察降低可識別性:G7司法管轄區對匿名化、假名化與去識別化的法定及政策定義》,揭示各國在降低可識別性相關用語定義及其在資料保護與隱私框架中的定位存在差異。隨著降低可識別性的方法與技術不斷創新,這一領域的監管挑戰日益突顯,也為跨境資料流動越發頻繁的國際環境提供了深化協調合作的契機。在全球日益關注資料保護與隱私的趨勢下,我國個人資料保護委員會籌備處於2024年12月20日公告《個人資料保護法》修正草案,要求民間業者設置個人資料保護長及稽核人員、強化事故通報義務,並針對高風險行業優先實施行政檢查等規定,以提升我國在數位時代的個資保護水準。
最後,本次圓桌會議尚訂定《2024/2025年行動計畫》(G7 Data Protection and Privacy Authorities’ Action Plan)[15],圍繞DFFT、新興技術與跨境執法合作三大議題,並持續推動相關工作。然而,該行動計畫更接近於一項「基於共識的宣言」,主要呼籲各國及相關機構持續努力,而非設定具有強制力或明確期限的成果目標。G7 DPAs如何應對數位社會中的資料隱私挑戰,並建立更順暢且可信的國際資料流通機制,將成為未來關注的焦點。在全球共同面臨AI快速發展所帶來的機遇與挑戰之際,我國更應持續關注國際趨勢,結合自身需求制訂相關法規以完善相關法制,並積極推動國際合作以確保國內產業發展銜接國際標準。
[1]Office of the Privacy Commissioner of Canada [OPC], G7 DPAs’ Communiqué: Privacy in the age of data (2024), https://www.priv.gc.ca/en/opc-news/news-and-announcements/2024/communique-g7_241011/ (last visited Feb 3, 2025).
[2]Id. at para. 5.
[3]Id. at para. 7-9.
[4]Office of the Privacy Commissioner of Canada [OPC], Statement on the Role of Data Protection Authorities in Fostering Trustworthy AI (2024), https://www.priv.gc.ca/en/opc-news/speeches-and-statements/2024/s-d_g7_20241011_ai/ (last visited Feb 3, 2025).
[5]Office of the Privacy Commissioner of Canada [OPC], Statement on AI and Children (2024), https://www.priv.gc.ca/en/opc-news/speeches-and-statements/2024/s-d_g7_20241011_child-ai/ (last visited Feb 3, 2025).
[6]Office of the Privacy Commissioner of Canada [OPC], Reducing identifiability in cross-national perspective: Statutory and policy definitions for anonymization, pseudonymization, and de-identification in G7 jurisdictions (2024), https://www.priv.gc.ca/en/opc-news/news-and-announcements/2024/de-id_20241011/ (last visited Feb 3, 2025).
[7]Office of the Privacy Commissioner of Canada [OPC], Statement on Generative AI (2023), https://www.priv.gc.ca/en/opc-news/speeches-and-statements/2023/s-d_20230621_g7/ (last visited Feb 3, 2025).
[8]Supra note 4, at para. 11.
[9]Supra note 4, at para. 18.
[10]Supra note 5, at para. 5-6.
[11]Supra note 5, at para. 7.
[12]Supra note 6, at para. 11-15.
[13]Supra note 6, at para. 16-19.
[14]Supra note 6, at para. 20-25.
[15]Office of the Privacy Commissioner of Canada [OPC], G7 Data Protection and Privacy Authorities’ Action Plan (2024), https://www.priv.gc.ca/en/opc-news/news-and-announcements/2024/ap-g7_241011/ (last visited Feb 3, 2025).