歐洲各國司法部長於1月16日與歐盟司法與內政委員會委員Franco Frattini進行會商,包括德國、英國、希臘、芬蘭、西班牙以及法國之司法部長皆同意支持建立全歐一致之共同規範以限制對孩童販售暴力遊戲軟體,並將據此檢視各國電腦軟體相關法制。
Franco Frattini委員過去基於「兒童保護應不分國界」之理念,曾建議建構以歐盟為範圍的標識規範,並鼓勵以兒童為銷售對象之遊戲業者建立自律規約,惟歐盟最後決議應交由各國政府自行規範。而Franco Frattini委員此次提案受到本屆歐盟輪值主席國-德國-司法部長Brigitte Zypries的支持,並指示相關規範建構之第一步,即是出版遊戲軟體分級摘要供家長參考,此摘要將很快於歐盟網站上公布。Zypries認為關於暴力遊戲的限制,歐盟應與國際進行合作溝通,由其針對美國與日本;Frattini則期望在歐盟27個會員國建構專門針對此類遊戲的標識規範,至於其他種類之遊戲則仍由各國政府自行管理。
目前國際間針對暴力遊戲限制,多數國家仍採取提供遊戲分級或相關指導守則之方式,於歐洲,僅英國與德國特別訂定法律加以規範,尤其在英國,遊戲軟體內容若具有對人類或動物之寫實暴力場景,或包含人類的性愛行為者,必須送交英國電影分級委員會(British Board of Film Classification,簡稱BBFC)審查。而美國已有部分州議會通過限制對未成年人販售遊戲的法律,但幾乎皆被「違反美國憲法修正條文第1條-言論自由保障」之理由成功推翻。
Twitpic公司為提供圖像分享服務軟體服務的公司,於2008年成立,2009年起,提供Twitter(微博)社群網站平台使用者,透過運用Twitpic的即時圖像分享功能,將照片及影像同時上傳至微博的服務;截至2014年6月已提供使用者此項微博平台的分享服務至少6年。Twitpic於2013年10月3日,以公司名稱「TWITPIC」為名稱,向USPTO(美國專利商標局)提出國際分類第42類之電腦服務之商標註冊案,並於2014年6月24日核准公告。 微博公司於知悉Twitpic商標申請資訊後,除了以Twitpic商標近似於先前註冊商標Twitter而提出商標異議外,並威脅Twitpic公司放棄商標申請,否則將切割Twitpic可直接連結照片至Twitter平台的服務。 同時,微博公司發言人表示,為了確保公司品牌及商譽不被侵害及淡化,故除了對於Twitpic公司提出商標異議外,並為了確保使用者能持續使用將照片及影像即時上傳至微博的服務,將由微博平台自行提供相關功能,以減少使用者無法運用Twitpic服務之不便。 因此,Twitpic公司負責人 Noah Everett於2014年9月初宣布,在無足夠的資源對抗大公司如微博的脅迫下,被迫於9月底關閉Twitpic服務。 依據Twitpic於微博上發布之最新消息顯示,Twitpic已被其他買家收購,將持續經營,但有關商標爭議案之後續發展,將持續觀察。
聯合國教科文組織發布《人工智慧倫理建議書》草案聯合國教科文組織於2020年9月發布《人工智慧倫理建議書》草案(First Draft Of The Recommendation On The Ethics Of Artificial Intelligence)(下稱建議書),以全球性的視野與觀點出發,為第一份全球性關於人工智慧倫理的建議書,試圖對人工智慧倫理作出框架性規定,對照其他區域性組織或個別國家人工智慧倫理準則或原則,著重之處稍有差異。該建議書係由組織總幹事Audrey Azoulay於2020年3月任命24位在人工智慧倫理學方面之跨領域專家,組成專家小組(AD HOC EXPERT GROUP, AHEG),以《建議書》的形式起草全球標準文書。 其主要內容提到六大價值觀:(一)人性尊嚴(Human dignity)、(二)基本人權和自由(Human rights and fundamental freedoms)、(三)不遺漏任何人(Leaving no one behind)、(四)和諧共生(Living in harmony)、(五)可信賴(Trustworthiness)、(六)環境保護(Protection of the Environment)。其中尤值關注處在於,建議書除強調人工智慧的技術、資料及研究需要進行全球範圍的共享外,相當重視世界上所有的國家及地區在人工智慧領域是否能均衡發展。特別在六大價值觀中提出「不遺漏任何人」觀點,也同時呼應了聯合國永續發展目標(Sustainable Development Goals, SDGs)的倡議。在人工智慧技術發展過程中,開發中國家(global south)及相對弱勢的群體是相當容易被忽略的。人工智慧蓬勃發展的時代,若某些群體或個體成為技術弱勢者,不僅在技術發展上有落差,更可能使人工智慧系統容易產生歧視、偏見、資訊和知識鴻溝,其後更將導致全球不平等問題的挑戰。 由專家小組起草的建議書草案已於2020年9月提交給聯合國成員國,作為對建議書的初步報告。該報告將提供給各會員國,並同步提交給預定於2021年召開的政府專家委員會,最後預計於2021年底的提交聯合國教科文組織大會。
歐盟第29條資料保護工作小組澄清有關網際行為廣告cookie的使用歐盟電子通訊隱私指令(Directive 2002/58/EC on Privacy and Electronic Communications, e-Privacy Directive)第五條(3)中對於cookie(即業者為辨別使用者身份而儲存在用戶端上的資料)設置的規範,將於2011年5月全面施行。惟對於cookie之使用,部分網路業者認為如果網路使用者沒有選擇不要裝置cookie (opt-out),那麼就等同於同意裝置,而不需另外取得使用者的同意。針對此點,歐盟第29條資料保護工作小組(Article 29 Data Protection Working Party)於2010年06月22日對於網際行為廣告作出一份意見(Opinion 2/2010 on online behavioural advertising)。 意見中澄清,網際行為廣告係一種透過cookie的使用,追蹤蒐集網路使用者上網行為的資料,其網路資訊將被使用於日後發放與使用者上網行為相對應的廣告之用。除非是屬於網路使用者明白要求使用cookie,或是使用網路服務所『必要』的cookie(例如,沒有cookie就無法顯示或進行至下一個頁面),則不必先行取得使用者的同意外;其他凡經由cookie所儲存的資料,均應被視為『個人資料』,使用上必需先行取得網路使用者的明示同意,以自行選擇(opt-in)的方式接受cookie的使用,後存於網路使用者的個人電腦中。業者不得以搜尋引擎的cookie設定主張視為網路使用者等同已經明示同意使用cookie進行被追蹤及蒐集資料。 該意見受到許多歐盟及國際之網際出版、廣告及商務業者的反彈,業者表示所蒐集的資料並非可辨認性或敏感性資料,此規範的執行將會嚴重衝擊到廣告產業的收益,建議採行自律規範或使用行為守則來取代上述規定。 由於這項規範尚未於歐盟中被執行,歐盟第29條資料保護工作小組對於技術上如何遵循該規範也並沒有提出具體的建議。
世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。