去(2006)年12月6日,澳洲眾議院核准之前參議院所通過的人類胚胎複製解禁法案,此法案由前健康部長亦是現任參議員Kay Patterson所提出,由於投票所涉及議題過於敏感,故各政黨開放其所屬議員自由投票,最終結果為贊成82票,反對62票。解禁法案主要是准許醫療性複製,但複製出來的胚胎不得植入子宮,且需於14天內被破壞或銷毀。另外,Kay Patterson表示,解禁法案將於健康及科學主管機關草擬卵子捐贈與研究授權指導方針的六個月後,開始施行。最後,此一修法應於3年後接受檢視。
目前澳洲與複製技術相關之法規有:人類複製禁止法(Prohibition of Human Cloning Act 2002)及人類胚胎研究法(Research Involving Human Embryo Act 2002)。人類複製禁止法顧名思義,即不允許任何形式的人類複製,而禁止項目包括:製造人類複製胚胎、將人類複製胚胎植入人類或動物體內、進出口人類複製胚胎………等等。前述修法通過後,澳洲國內將可進行為醫療目的之複製胚胎行為,為其國內胚胎幹細胞發展開一扇窗。
近年來,由於複製技術及胚胎幹細胞研究正逐漸成為顯學,加上醫療應用潛力極大,故即使於社會輿論壓力下,仍有許多國家修立法准許醫療性複製,包括:瑞典、英國、韓國等等。澳洲這次的修法,是否代表全球對於複製技術規範之態度有了某種程度之轉變?值得持續觀察。
本文為「經濟部產業技術司科技專案成果」
為鼓勵金融產業之創新,同時使其遵循應有之責任,並讓歐盟金融消費者與商業機構享有更多之利益,歐盟執委會於2020年10月24日提出數位金融包裹法案(Digital Finance Package),並提出以下2項數位金融立法提案: 一、加密資產立法提案(Proposal for Markets in Crypto-assets) 為促進金融創新並同時保有金融穩定性與保護投資人,歐盟執委會提出加密資產管制框架立法提案,並將加密資產分為已受監管與未受監管兩類,前者將持續依據既有規範進行管理。而針對尚未管制之加密資產,該提案針對加密資產發行人與加密資產服務供應商建立嚴格限制,要求取得核准後始可提供服務。具體而言之,立法提案包含以下項目: (一)針對加密資產、加密資產發行人等金融商品名詞進行定義。並建立加密資產服務供應商與發行人營運上、組織架構與資產發行程序之透明度與揭露制度。 (二)針對向公開市場提供加密資產進行管制,例如,依據提案第4條,供應商應為法人,第5條則要求供應商應製作加密資產白皮書,並將其提供給主管機關後始可於公開市場提供相關服務。 (三)針對代幣資產發行人以及其加密資產之審核程序,依據提案第15條,代幣發行者必須為歐盟境內之法律實體。另外,該法要求加密資產發行人應誠實、公平且專業,並完成加密資產白皮書之出版與制定市場溝通規則。 (四)針對加密資產之收購,該法第4章亦設有相關規範,於第37條及38條規定收購之評估機制。 (五)針對加密資產服務供應商之授權與營運條件,該法第5章規定歐盟證券及市場管理局應建立加密資產服務供應商之登記制度。 (六)針對市場秩序維護之部分,該法於第6章規範相關預防市場濫用之禁止事項與要求,並於第7章賦予歐盟成員國各主管機關相關權力,例如第94條之監督與懲處權限。 二、歐盟數位營運韌性管制框架立法提案(Proposal for Digital Operational Resilience) 數位化總伴隨資安風險,歐盟執委會於包裹法案內亦提出歐盟數位營運韌性管制框架立法提案,以確保相關企業可應對所有與通訊技術有關之干擾與威脅,另外,銀行、證券交易所、票據交換所以及金融科技公司將需遵循嚴格之標準以預防並降低ICT資安事件所產生之衝擊,另外亦將針對金融機構雲端運算服務供應商進行監管。具體規範包含: (一)ICT風險管理要求:該立法提案參照相關國際標準,於第5至第14條制訂相關ICT風險管理要求,惟未要求應遵循具體國際標準。 (二)ICT相關事件報告:該提案於第15至20條規範相關報告義務,將整合歐盟金融機構之ICT相關事件報告與監測程序。 (三)數位運作韌性測試:該提案於第21至第24條要求ICT風險管理框架應定期進行測試,惟具體方法可依據組織之規模、風險側寫與商務模式進行調整。 (四)第三方單位風險:該提案於第25至39條規範組織應對ICT第三方供應商風險進行監測,例如,第25條要求金融機構委外執行業務仍應隨時遵循所有金融服務規範,另外,ICT風險管理框架之內容亦應包含第三方ICT風險之監督策略。
美國商務部產業安全局對半導體成熟節點晶片的使用進行評估調查美國產業安全局(Bureau of Industry and Security,下稱BIS)於2024年1月18日,針對直接或間接支持美國國家安全和關鍵基礎設施,全面評估供應鏈中成熟節點半導體設備的使用情況。本次調查將根據《1950年國防生產法》(Defense Production Act of 1950)第705條進行,以評估在美國關鍵產業(如電信、汽車、醫療設備和國防工業基地)的供應鏈中使用由中國公司生產的成熟節點晶片的程度和影響力。 BIS同時提供常見問答予各界參考,主要包括如下內容: (1)本次評估調查為一次性的資訊蒐集;不排除未來也可能依指示再次進行類似的評估。 (2)本次評估將提供後續政策制定的參考,以加強半導體供應鏈,促進傳統晶片生產的公平競爭,並降低中國對美國帶來的國家安全風險。 (3)自1986年以來,BIS已就造船、戰略性材料、太空和航空、火箭推進、彈藥和半導體等廣泛項目進行過約60多項評估以及150多項調查。 (4)商務部可能會公開一份主要調查結果的摘要說明。 (5)本次評估並非根據《2021年國防授權法案》(National Defense Authorization Act for Fiscal Year 2021,即俗稱之《晶片法》)第9902節規定進行。個別對調查的答覆不會影響申請《晶片法》或其他政府資助的資格或考量。 (6)本次評估並非BIS對於高階運算晶片規範的一部分,而是著重成熟節點或傳統晶片的舊技術。
社群媒體發展網路不當言論管理機制之趨勢觀察 用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).