智慧電網是歐洲未來低碳能源政策的核心議題,但要更新整個電力系統所費不貲,根據國際能源署(International Energy Agency, IEA)研究指出,從2007年至2030年,若要從生產、輸電到配電全部更新,需要花費1.5兆歐元(EUR 1.5 trillion),故基於投資的考量,有必要依據電網示範計畫所獲得的實際數據,來評估智慧電網發展的成本效益。因此,歐盟聯合研究中心(Joint Research Centre, JRC)分析了歐洲過去及現在正在進行的智慧電網示範計畫的成果,提出全面性的成本效益分析(cost-benefit analysis, CBA)評估架構,並選定葡萄牙InovGrid計畫作為參考實例以調整相關內容,於2012年初公布「智慧電網計畫的成本效益分析指導原則(Guidelines for conduction a cost-benefit analysis of Smart Grid projects,以下簡稱「智慧電網CBA指導原則」)」。 這是第一次具體的將CBA使用在智慧電網的實際案例評估之上,「智慧電網CBA指導原則」是為協助使用者分析不同地區的考量因素,以瞭解利益與成本,並分析關鍵要素,包括計畫的規模大小(例如每年接受服務的消費者、能源消費等)、工程特色(例如所採用的技術、主要設備的功能性)、電網當地特色、利益關係者(哪些人的成本及利益應納入考慮)、計畫的明確目的及預期對社會經濟的衝擊,以瞭解像分散式能源整合的可能性、電價及租稅的衝擊、環境成本等。「智慧電網CBA指導原則」是在提供建議,依據電力研究機構(Electric Power Research Institute, EPRI)的研究框架,逐步地提供了評估架構,作為分析考量時的核對清單。由於納入了地區性因素的考量,因此分析的結果最終將取決於各計畫的開發者及相關決策者的專業判斷。 此外,JRC亦公布「智慧電表部署的成本效益分析指導原則(Guidelines for conduction a cost-benefit analysis of Smart Metering Deployment,以下簡稱「智慧電表CBA指導原則」)」。「智慧電表CBA指導原則」之內容主要提供會員國在評估智慧電表的部署時,有一套分析的標準。如同「智慧電網CBA指導原則」一般,「智慧電表CBA指導原則」亦考量計畫規模、工程特色、電網當地特色、利益關係者、計畫的明確目的及預期對社會經濟的衝擊等因素,但非針對不同地區提供細節性的指示,因此仍須仰賴各計畫的開發者及相關決策者的專業判斷,以評估智慧電表部署的可行性。
世界經濟論壇發布《2022年全球網路安全展望》世界經濟論壇(World Economic Forum, WEF)於2022年1月18日發布《2022年全球網路安全展望》(Global Cybersecurity Outlook 2022),以面對因COVID-19大流行所致之遠距辦公、遠距學習、遠距醫療等新形態數位生活模式快速發展,以及日漸頻繁之具破壞性網路攻擊事件。為考量國家應優先考慮擴展數位消費工具(digital consumer tools)、培育數位人才及數位創新,本報告說明今年度網路安全發展趨勢及未來所要面對之挑戰包括如下: COVID-19使得工作習慣轉變,加快數位化步伐:約有87%企業高階管理層計畫透過加強參與及管理第三方的彈性政策、流程與標準,提高其組織的網路韌性(cyber resilience)。 企業資安長(chief information security officers, CISO)及執行長(chief executive officers, CEO)之認知差異主要有三點:(1)92%的CEO認為應將網路韌性整合到企業風險管理戰略中,惟僅55%CISO同意此一作法;(2)由於領導層對網路韌性認知差異,導致安全優先等級評估與政策制定可能產生落差;(3)缺乏網路安全人才以面對網路安全事件。 企業最擔心之三種網路攻擊方式為:勒索軟體(Ransomware attacks)、社交工程(social-engineering attacks),以及惡意內部活動。惡意內部活動係指企業組織之現任或前任員工、承包商或業務合作夥伴,以對組織產生負面影響方式濫用其關鍵資產。 憂心中小企業數位化不足:本研究中有88%之受訪者表示,擔心合作之中小企業之數位化程度不足,導致供應鏈或生態系統中使其網路韌性受阻。 網路領導者認為建立明確有效的法規範,將有助於鼓勵資訊共享與促進合作。
FDA發佈人工智慧/機器學習行動計畫美國食品藥物管理署(U.S. Food & Drug Administration, FDA)在2021年1月12日發布有關人工智慧醫療器材上市管理的「人工智慧/機器學習行動計畫」(Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD) Action Plan)。該行動計畫的制定背景係FDA認為上市後持續不斷更新演算法的機器學習醫療器材軟體(Software as Medical Device, SaMD),具有極高的診療潛力,將可有效改善醫療品質與病患福祉,因此自2019年以來,FDA嘗試提出新的上市後的監管框架構想,以突破現有醫療器材軟體需要「上市前鎖定演算法、上市後不得任意變更」的監管規定。 2019年4月,FDA發表了「使用人工智慧/機器學習演算法之醫療器材軟體變更之管理架構—討論文件」(Proposed Regulatory Framework for Modifications to Artificial Intelligence/Machine earning (AI/ML)-Based Software as a Medical Device (SaMD) - Discussion Paper and Request for Feedback)。此一諮詢性質的文件當中提出,將來廠商可在上市前審查階段提交「事先訂定之變更控制計畫」(pre-determined change control plan),闡明以下內容:(1)SaMD預先規範(SaMD Pre-Specification, SPS):包含此產品未來可能的變更類型(如:輸入資料、性能、適應症)、變更範圍;(2)演算法變更程序(Algorithm Change Protocol, ACP):包含變更對應之處理流程、風險控制措施,以及如何確保軟體變更後之安全及有效性。 根據「人工智慧/機器學習行動計畫」內容所述,「事先訂定之變更控制計畫」構想被多數(包含病患團體在內)的利害關係人肯認,並於相關諮詢會議當中提出完善的細部建言。FDA將根據收到的反饋意見,於2021年以前正式提出有關人工智慧/機器學習上市後監管的指引草案(Draft Guidance),並持續研究提高演算法透明度、避免演算法偏見的方法。
中國大陸國務院揭示支持科技成果轉化政策措施中國大陸國務院於2016/年2月18日國務院常務會議中確認支持科技成果移轉轉化政策措施及促進科技與經濟深度融合。 依據該會議決議,為提升創新主體的積極性,將鼓勵國家設立之研究開發機構、高等院校以轉讓、授權或作價投資等方式,向企業或其他組織轉移科技成果,並適用以下政策: (1) 自主決定轉移其持有的科技成果,原則上不需審批或備案。鼓勵優先向中小微企業轉移成果。支援設立專業化技術轉移機構。(惟在境外實施方面,仍須依《科學技術進步法》第21條及《中國大陸國家科技重大專項知識產權管理暫行規定》第33條進行審批。) (2) 成果轉移收入全部留歸單位,主要用於獎勵科技人員和開展科研、成果轉化等工作。科技成果轉移和交易價格要按程式公示。 (3) 通過轉讓或許可取得的淨收入及作價投資獲得的股份或出資比例,應提取不低於50%用於獎勵,對研發和成果轉化作出主要貢獻人員的獎勵份額不低於獎勵總額的50%。科技人員在成果轉化中開展技術開發與服務等活動,可依法依規獲得獎勵。在履行盡職義務前提下,免除事業單位領導在科技成果定價中因成果轉化後續價值變化產生的決策責任。 (4) 科技人員可以按照規定在完成本職工作的情況下到企業兼職從事科技成果轉化活動,或在3年內保留人事關係離崗創業,開展成果轉化。離崗創業期間,科技人員承擔的國家科技計畫和基金專案原則上不得中止。鼓勵企業採取股權獎勵、股票期權、專案收益分紅等方式,激勵科技人員實施成果轉化。 (5) 將科技成果轉化情況納入研發機構和高校績效考評,加快向全國推廣國家自主創新示範區試點稅收優惠政策,探索完善支援單位和個人科技成果轉化的財稅措施。更好發揮科技創新對穩增長、調結構、惠民生的支撐和促進作用。