本文為「經濟部產業技術司科技專案成果」
歐盟個人資料保護委員會 (European Data Protection Board, EDPB)在徵詢公眾意見後,於今(2023)年5月24日通過了「歐盟一般資料保護規則行政裁罰計算指引04/2022」(Guidelines 04/2022 on the calculation of administrative fines under the GDPR)。此一指引,旨在協調各國資料保護主管機關(Data Protection Authorities, DPAs)計算行政罰鍰的方法,以及建立計算《歐盟一般資料保護規則》(General Data Protection Regulation, GDPR )裁罰金額的「起點」(Starting Point)。 時值我國於今(2023)年5月29日甫通過《個人資料保護法》之修法,將違反安全措施義務的行為提高裁罰數額至最高1500萬,金額之提高更需要一個明確且透明的定裁罰基準,因此該指引所揭露的裁罰計算步驟值得我國參考。指引分為五個步驟,說明如下: 1.確定案件中違反GDPR行為的行為數以及各行為最高的裁罰數額。如控管者或處理者以數個行為違反GDPR時,應分別裁罰;而如以一行為因故意或過失違反數GDPR規定者,罰鍰總額不得超過最嚴重違規情事所定之數額(指引第三章)。 2.確定計算裁罰金額的起點。EDPB將違反GDPR行為嚴重程度分為低度、中度與高度三個不同的級別,並界定不同級別的起算金額範圍,個案依照違反GDPR行為嚴重程度決定金額範圍後,尚需考量企業的營業額度以定其確切金額作為裁罰數額起點(指引第四章)。 3.控管者/處理者行為對金額的加重或減輕。評估控管者/處理者過去或現在相關行為的作為加重或減輕的因素而相應調整罰鍰金額(指引第五章)。 4.針對各違反行為,參照GPDR第83條第4項至第6項確定行政裁罰上限。GDPR並沒有對具體的違反行為設定固定的罰款金額,而是對不同違反行為規範了裁罰最高額度上限,EDPB提醒,適用第三步驟或下述第五步驟所增加的額度不能超過GDPR第83條第4至第6項度對不同違反行為所訂的最高額度限制(指引第六章)。 5.有效性、嚇阻性與比例原則的考量。個資保護主管機關應針對具體個案情況量以裁罰,必須分析計算出的最終額度是否有效、是否發揮嚇阻以及是否符合比例原則,而予以相應調整裁罰額度,而如果有客觀證據表明裁罰金額可能危及企業的生存,可以考慮依據成員國法律減輕裁罰金額(指引第七章)。 EDPB重申其將不斷審查這些步驟與方法,其亦提醒上述所有步驟必須牢記,罰鍰並非簡單數學計算,裁罰金額的關鍵因素應取決具體個案實際情況。
歐洲藥品管理局更新利益衝突規範歐洲藥品管理局(The European Medicines Agency,EMA)於3月底至6月初陸續發布四份利益衝突範。包括「處理管理董事會利益衝突政策方針」(European Medicines Agency Policy on the Handling of Conflicts of Interests of the Management Board),將董事會自過去的利益衝突獨立出來單獨規範;並針對違反利益聲明揭露訂立「EMA科學委員會和專家違反利益衝突信賴程序」(European Medicines Agency Breach of Trust Procedure on Conflicts of Interests for Scientific Committee Members and Experts),和「EMA管理董事會違反利益衝突信賴程序」(European Medicines Agency Breach of Trust Procedure on Conflicts of Interests for Management Board Members);以及修定「處理管理董事會、科學委員會成員和專家利益衝突政策方針」(European Medicines Agency Breach of Trust Procedure on Conflicts of Interests for Scientific Committee Members and Experts)。 針對專家和管理董事會所制定的處理利益衝突規範,主要目的是確保兩者在參與EMA的活動時,不會發生與醫藥業者相關聯的利益衝突,影響EMA公正性。觀察上述規範,可以發現EMA對於專家和管理董事會兩者的規範原則相當一致,皆聚焦於增進利益衝突處理過程的強健性(robustness)、有效性(efficiency)和透明性(transparency)。分別規範的原因在於兩者功能上的區別,分述如下: 1. 專家規範層面,有鑒於在先進醫藥領域中的專家有限,缺少可替代性,因此規範目的在於兼顧公正性與專業之間的平衡; 2. 管理董事會層面,由於其主要任務為監管和決策,規範上區別成員所參與活動的程度和範圍做更為細部的規範,與專家不同,並非有利益衝突就必須迴避。 為進一步加強EMA處理利益衝突的強健性,EMA科學委員會和專家,以及管理董事會違反利益衝突信賴程序的主要規範內容為專家和管理董事會成員作出不實利益聲明時,EMA的處理程序。可區分為調查、聽證與修正三個階段,分述如下: 1.調查階段,首先調查系爭當事人是否為不實之利益聲明後,評估是否啟動違反利益衝突信賴程序; 2.聽證階段,召開聽證會,聽證系爭當事人陳述觀點。倘若確定違反利益衝突信賴,系爭當事人即自EMA除名; 3.修正階段,EMA將審查系爭當事人曾經參與科學審查案件的公正性,並評估是否進行補救措施。 雖然EMA對於專家是否確實聲明利益缺少強制力,然而仍能透過新的利益衝突機制設計,看出EMA對完善利益衝突規範的企圖,值得近來正在修訂利益衝突機制的我國學習。
歐盟與17家社交網站業者達成協議,強化青少年上網安全受惠於網路的高度普及與上網費用的調降,網路已成為民眾日常生活所不可或缺的事項。由於整體網路人口中,青少年占有極高的比重,如何提供青少年一個安全的網路空間,向為各國所關注的議題。 近年來社交網站在歐洲發展迅速,根據統計,現階段歐洲約有4,170萬的網路使用者,參與各種類型的社交網站。為防止日益嚴重的網路霸凌(Cyber-Bulling)及兒童賣春等問題,歐盟於2009年2月與MySpace、Facebook等17家社交網站達成協議,相關業者承諾將於自家網站上提供一個「申告侵害」(Report Abuse)的按鍵,便利使用者快速通知業者來自於他人的不合宜接觸或行為,以防止青少年受到網路霸凌或網路援交訊息的困擾。 社交網站業者除承諾提供上述通報機制外,在此次協議中,業者亦承諾強化青少年個人隱私的保護,以避免有心人士輕易透過社交網站,取得青少人之私密資料。
因應使用「生成式AI(Generative AI)」工具的營業秘密管理強化建議2024年7月1日,美國實務界律師撰文針對使用生成式AI(Generative AI)工具可能導致的營業秘密外洩風險提出營業秘密保護管理的強化建議,其表示有研究指出約56%的工作者已經嘗試將生成式AI工具用於工作中,而員工輸入該工具的資訊中約有11%可能包含公司具有競爭力的敏感性資訊或客戶的敏感資訊,以Chat GPT為例,原始碼(Source Code)可能是第二多被提供給Chat GPT的機密資訊類型。系爭機密資訊可能被生成式AI工具提供者(AI Provider)用於訓練生成式AI模型等,進而導致洩漏;或生成式AI工具提供者可能會監控和存取公司輸入之資訊以檢查是否有不當使用,此時營業秘密可能在人工審查階段洩漏。 該篇文章提到,以法律要件而論,生成式AI有產生營業秘密之可能,因為營業秘密與著作權和專利不同之處在於「發明者不必是人類」;因此,由生成式 AI 工具協助產出的內容可能被視為營業秘密,其範圍可能包括:公司的內部 AI 平台、基礎的訓練算法和模型、輸入參數和輸出結果等。惟基於目前實務上尚未有相關案例,故生成式AI輸出結果在法律上受保護的範圍與條件仍需待後續的判例來加以明確。 實務專家提出,即使訴訟上尚未明確,企業仍可透過事前的管理措施來保護或避免營業秘密洩露,以下綜整成「人員」與「技術」兩個面向分述之: 一、人員面: 1.員工(教育訓練、合約) 在員工管理上,建議透過教育訓練使員工了解到營業秘密之定義及保護措施,並告知向生成式AI工具提供敏感資訊的風險與潛在後果;培訓後,亦可進一步限制能夠使用AI工具的員工範圍,如只有經過培訓及授權之員工才能夠存取這些AI工具。 在合約方面,建議公司可與員工簽訂或更新保密契約,納入使用生成式AI的指導方針,例如:明確規定禁止向生成式AI工具輸入公司營業秘密、客戶數據、財務信息、未公開的產品計劃等機密資訊;亦可增加相關限制或聲明條款,如「在生成式AI工具中揭露之資訊只屬於公司」、「限制公司資訊僅能存儲於公司的私有雲上」等條款。 2.生成式AI工具提供者(合約) 針對外部管理時,公司亦可透過「終端使用者授權合約(End User License Agreement,簡稱EULA)」來限制生成式AI工具提供者對於公司在該工具上「輸入內容」之使用,如輸入內容不可以被用於訓練基礎模型,或者該訓練之模型只能用在資訊提供的公司。 二、技術方面: 建議公司購買或開發自有的生成式AI工具,並將一切使用行為限縮在公司的私有雲或私有伺服器中;或透過加密、防火牆或多種編碼指令(Programmed)來避免揭露特定類型的資訊或限制上傳文件的大小或類型,防止機密資訊被誤輸入,其舉出三星公司(Samsung)公司為例,三星已限制使用Chat GPT的用戶的上傳容量為1024位元組(Bytes),以防止輸入大型文件。 綜上所述,實務界對於使用生成式AI工具可能的營業秘密風險,相對於尚未可知的訴訟攻防,律師更推薦企業透過訴訟前積極的管理來避免風險。本文建議企業可將前述建議之作法融入資策會科法所創意智財中心於2023年發布「營業秘密保護管理規範」中,換言之,企業可透過「營業秘密保護管理規範」十個單元(包括從最高管理階層角色開始的整體規劃建議、營業秘密範圍確定、營業秘密使用行為管理、員工管理、網路與環境設備管理、外部活動管理,甚至是後端的爭議處理機制,如何監督與改善等)的PDCA管理循環建立基礎的營業秘密管理,更可以透過上述建議的做法(對單元5.使用管理、單元6.1保密約定、單元6.4教育訓練、單元7.網路與環境設備管理等單元)加強針對生成式AI工具之管理。 本文同步刊登於TIPS網站(https://www.tips.org.tw)