本文為「經濟部產業技術司科技專案成果」
美國食品藥物管理局(the United States Food and Drug Administration,以下簡稱FDA)於2015年2月13日公告四項與藥品製造有關之指導原則(guidance)作為補充相關政策執行之依據,主要涉及藥品製程中,藥品安全不良事件回報機制、尚未經許可之生技產品的處理模式、藥品重新包裝,以及自願登記制度中外包設施之認定應進行的程序與要求。 該四項指導原則係源於FDA依據2013年立法通過之藥物品質與安全法(The Drug Quality and Security Act,以下簡稱DQSA)所制定之最新指導原則。因2012年位於麻州的新英格蘭藥物化合中心(The New England Compounding Center),生產類固醇注射藥劑卻遭到汙染,爆發致命的黴菌腦膜炎傳染事故,故美國國會制定DQSA,以避免相同事故再次發生。DQSA要求建立自願登記制度(system of voluntary registration),倘若製藥廠自願同意FDA之監督,成為所謂的外包設施(outsourcing facilities)。作為回饋,FDA即可建議特定醫院向該製藥廠購買藥品。 而本次四項指導原則之內容,其一主要涉及外包設施進行藥物安全不良事件回報之相關規定,要求製藥廠必須回報所有無法預見且嚴重的藥物安全不良事件。在不良事件報告中必須呈現四項資訊,其中包括患者、不良事件首名發現者、所述可疑藥物以及不良事件的類型。同時,禁止藥品在上市時將這些不良事件標示為潛在副作用。第二份指導原則對於尚未經許可的生技產品,規定可進行混合,稀釋或重新包裝之方法;並排除適用某些類型的產品,如細胞療法和疫苗等。第三份指導原則涉及重新包裝之規定,內容包括包裝地點以及如何進行產品的重新包裝、監督、銷售和分發等其他相關事項。而第四份指導原則規範那些類型之藥品製造實體應登記為外包設施。為此,FDA亦指出聯邦食品藥物和化妝品法(the Federal Food Drug & Cosmetic Act)之規定裡,已經要求製造商從事無菌藥品生產時,必須將法規針對外包設施之要求一併納入考量。
基因專利新發展隨著基因工程的逐漸成熟,關於現代生物技術可否取得專利,引起激烈的公開辯論。為了澄清這些問題,歐盟和美國曾採取重要的立法和行政措施,如歐洲議會和理事會關於生物技術發明的98 / 44 / EC指令 ,及美國專利商標局2001年1月5日所修改的確認基因有關發明實用性指南(Guidelines For Determining Utility Of Gene-Related Inventions of 5 January 2001)。 然而,美國最高法院於2013年《Association for Molecular Pathology v. Myriad Genetics, Inc.》一案中認為,自然發生的DNA片段是自然界的產物,不因為其經分離而具有可專利適格性,但認為cDNA(complementary DNA,簡稱cDNA)具有可專利適格性,因為其並非自然發生。該判決強調Myriad Genetics, Inc.並未創造或改變任何BRCA1和BRCA2基因編碼的遺傳信息,即法院承Myriad Genetics, Inc.發現了一項重要且有用的基因,但該等基因從其週邊遺傳物質分離並非一種發明行為。不過,法院也認為“與經分離的DNA片段屬於天然發生者不同,cDNA則具有可專利性。”因此,“cDNA非自然的產物,且根據美國專利法第101條具有可專利性。” 其次,美國於2012年3月《Mayo Collaborative Services v. Prometheus Laboratories》案認為,檢測方法僅為揭露一項自然法則,即人體代謝特定藥物後、特定代謝產物在血液中濃度與投與藥物劑量發揮藥效或產生副作用的可能性間的關聯性。即使需要人類行為(投以藥物)來促使該關聯性在特定人體中展現,但該關聯性本身是獨立於任何人類行為之外而存在,是藥物被人體代謝的結果,因此,全部應為自然過程。而不具有可專利性。
德國機器人和人工智慧研究人工智慧及機器人分為以下4種類型:首先是工廠裡的作業機器人,可自主性重複執行相同任務,例如拾取、放置、運輸物品,它們在侷限的環境中執行具體事務,而且通常是在周圍無人的圍籬區內作業,然而目前趨勢已有越來越多機器人可安全執行人機協作的任務。第二種係用在傳統製造外的專業機器人,例如:擠奶機器人、醫院手術機器人。第三種是生活中常見的消費產品機器人,常用於私人目的,例如:吸塵器機器人、割草機器人。最後是人工智慧軟體,此軟體可應用於醫療診斷輔助系統、語音助理系統中,目前越來越多人工智慧軟體結合復雜的感測器和聯網裝置,可執行較複雜之任務,例如:自動駕駛車。 德國人工智慧研究中心(Deutsche Forschungszentrum für Künstliche Intelligenz,DFKI)為非營利性公私合作夥伴(PPP)之研究機構,與歐盟,聯邦教育及研究部(BMBF)、德國聯邦經濟及能源部(BMWi),各邦和德國研究基金會(DFG)等共同致力於人工智慧之研究發展,轄下之機器人創新中心(Robotics Innovation Center,RIC)亦投入水下、太空、搜救、物流、製造業等各領域機器人之研究,未來將著重於研究成果的實際運用,以提升各領域之生產力。2016年6月,各界專家於德國聯邦議院的數位議程委員會中,呼籲立法者應注意機器人技術對經濟,勞動和社會的影響,包括技術及產品的安全標準、機器人應用之法律歸責問題、智慧財產權的歸屬與侵權問題,隱私權問題、及是否對機器人課稅等,進行相關修法監管準備。 解決台灣人口結構老化、勞動力短缺與產業競爭力等問題已是當務之急,政府為促進台灣產業轉型,欲透過智慧機械創新與物聯網技術,促使產業朝智慧化生產目標邁進。未來除需持續精進技術研發與導入產業業升級轉型外,應將人工智慧納入政策方針,並持續完備法制環境建構及提升軟實力,以確保我國技術發展得以跟上世界潮流。
日本數位廳發布資料治理指引,協助企業運用資料提升企業價值日本數位廳發布資料治理指引,協助企業運用資料提升企業價值 資訊工業策進會科技法律研究所 2025年09月05日 隨著AI迅速普及已成為不可逆轉的趨勢,經濟與社會產生重大變革,手機、家電及各種智慧裝置大量蒐集資料,似已成為維持經濟與社會運作不可或缺的重要要素,在國際上已出現如歐洲共同資料空間(Common European Data Space)等先進的資料運用案例,日本亦開始推動企業跨領域資料運用,藉此提升企業生產力與附加價值[1]。 壹、事件摘要 日本數位廳(デジタル庁)於2025年6月20日發布資料治理指引(データガバナンス・ガイドライン),以企業經營者為適用對象,歸納總結資料治理之必要性、應採取之做法,與實踐治理過程中應留意之要點,協助企業推動數位轉型,發揮資料最大效用,持續提升企業價值,並進一步實現超智慧社會[2](Society 5.0)願景[3]。 貳、指引重點 本指引歸納總結實踐資料治理的四大支柱,概述如下: 一、設計符合跨境傳輸資料實際狀況之業務流程 資料共享與協作的主要目的是推動數位轉型與提升企業價值,因此,運用跨境資料時,需要調查當地國家或地區法規,釐清國際規範,並預測後續法規動向,克服法規限制。為評估運用跨境資料之潛在風險,則須透過如顧問公司、諮詢公司等第三方外部機構進行調查與監控,採取適當風險因應措施。為明確責任,須事先與資料共享之利害關係人,將瑕疵擔保責任透過契約與相關規定明文化。在修改業務流程時,亦須與相關組織及利害關係人共享資訊,確保資料在生命週期中的可追溯性[4]。 二、確保資料安全(データセキュリティ) 以資料生命週期為基礎,掌握運用跨境資料可能產生之風險,並依照相關組織與利害關係人值得信賴之程度,進行風險分析制定因應策略。針對業務流程中取得的資料,應限制在資料產生者允許之範圍內,始得進行運用,以維護資料使用正當性。此外,亦須特別留意資料完整性,確保資料來源值得信賴且未受到偽冒,以及資料內容未遭到竄改或洩漏[5]。 三、提升資料成熟度(データマチュリティ) 制定並推動可提升資料成熟度[6]之方針,持續改善流程,將資料價值最大化,並將風險最小化,提升企業綜合能力。資料長(Chief Data Officer, CDO)須發揮領導能力,建立能迅速因應變化的體制,明確各組織相關負責人與其角色,並推動具備資料相關技能之人才培育招聘計畫。資料長亦須分析導入如AI等先進技術之費用效益,向經營者提出建議。除了公司自身狀況會影響資料成熟度外,亦可能受到資料共享與協作之利害關係人的資料成熟度水準影響。因此,公司亦須將採取之具體措施與相關資訊分享予利害關係人,並向社會公開公司目前資料成熟度水準,持續強化企業與利害關係人及社會之間的相互信賴程度[7]。 四、制定並定期檢討AI等先進技術運用行動方針 為使AI等先進技術發揮最大力量,並降低對社會與個人可能造成的負面影響,企業應參考經濟產業省(経済産業省)於2025年3月28日發布之AI業者指引第1.1版[8](AI事業者ガイドライン第1.1版),並考量個人資料保護、機敏資料保護、透明度、可問責等重要因素,針對涉及資料運用的各種實務運用場景,由CDO主導制定運用AI等先進技術運用行動方針(AIなどの先端技術の利活用に関する行動指針),並適時檢討持續改善內容[9]。 參、事件評析 當資料留存在企業內部未被有效運用時,不僅會成為企業和產業發展之阻礙,也將導致社會整體效率低落。本指引歸納總結實踐資料治理的四大支柱。為達成協助企業運用資料推動數位轉型,提升企業價值之目標,除了需要企業管理階層主導,亦須獲得公司內部與利害關係人之理解與支持。企業應積極與其他企業、組織和機構進行資料共享與協作,積極參與資料治理,提高產品與服務價值及企業聲譽,進而促進社會永續性發展[10]。 隨著國際上已出現先進資料運用案例,我國亦須關注資料運用國際趨勢推動創新發展,日本推動企業跨領域運用資料之做法,亦可為我國未來實踐資料治理提供借鏡。 [1]〈データガバナンス・ガイドライン〉,デジタル庁,頁2-3,https://www.digital.go.jp/assets/contents/node/information/field_ref_resources/71bf19c2-f804-488e-ab32-e7a044dcac58/b1757d6f/20250620_news_data-governance-guideline_01.pdf (最後瀏覽日:2025/09/02)。 [2]〈Society 5.0〉,内閣府,https://www8.cao.go.jp/cstp/society5_0/index.html (最後瀏覽日:2025/09/02)。 [3]前揭註1。 [4]同前註,頁13。 [5]同前註,頁15-16。 [6]資料成熟度係指企業根據其戰略或經營需求,有效運用資料的能力。可參閱同前註,頁5。 [7]同前註,頁18-19。 [8]〈AI事業者ガイドライン〉,経済産業省,https://www.meti.go.jp/shingikai/mono_info_service/ai_shakai_jisso/20240419_report.html (最後瀏覽日:2025/09/02)。 [9]前揭註1,頁20-23。 [10]同前註,頁24-25。