WTO歐盟生技產品案解析(下)

刊登期別
第19卷,第3期,2007年03月
 

本文為「經濟部產業技術司科技專案成果」

※ WTO歐盟生技產品案解析(下), 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=2104&no=67&tp=1 (最後瀏覽日:2026/02/01)
引註此篇文章
你可能還會想看
美國CIPU報告指出「智財管理者與企業經營者須具備充足之智慧財產權素養,以處理日常業務上的智慧財產權議題」

美國The Center for Intellectual Property Understanding(CIPU,以提高人們的智慧財產管理素養和提倡阻止侵權行為為宗旨的教育推廣非營利組織)於2025年2月19日發布之「Manager and Entrepreneur IP Experience: The Limitations of On the Job Learning」報告指出,於美國從事智慧財產權的美國商業人士於智慧財產權相關問題時有兩大現象,包括:專利人員具備基本營業秘密素養之重要性與日常商務活動之商標、著作權問題日趨普遍。 針對前者,根據Ocean Tomo發布的市場研究,從1975年到2020年,無形資產佔整公司整體價值從17%提升至90%,可見智慧財產權在國際市場的重要性,這也表示有更多不同領域的專業人士在參與處理專利、著作權及商標之問題,包括非法律專業人士,例如工程師、行銷策略師和其他來自教育領域之人員等,但是這些人員之所學很少涉略智慧財產,將導致無法確實有效的因應智慧財產議題,進而造成付出代價高昂的溝通障礙以及難以認定專利是否具備商業應用等負面影響。而一些從事專利領域的人員指出,當了解營業秘密的重要性,將可使從事處理智慧財產相關工作的人員決定是否要保密抑或揭露公開揭露這些資訊。 至於後者,在本篇報告相關的研究指出,高商標註冊率和高獲利及股票回報價值的整體無形資產間存在正向關係。許多受訪者還提到透徹了解商標法對於發展品牌、降低責任風險的方式至關重要。對於生成式AI的領域的企業家,因為侵權和合理使用問題持續存在,所以著作權意識的重要性也隨之提升。而為公司管理著作權資產的專業人士時常有管理多樣化資產的機會,例如廣播、串流媒體的權利金及整個產業鏈的製作成本等。 因此,對於時常接觸智慧財產之產業之相關人員而言,應提供更多智慧財產權相關課程,開發可存取、使用者友善的資源,以彌平從事任何形式的智慧財產權的專業人員法律素養之差距,進而使這些人員足以應對日常業務上可能面臨的智慧財產問題。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

日本「u-Japan政策」簡介

微軟與Linspire將展開技術合作

  微軟(Microsoft)宣佈又與Linux銷售商簽署,本次合作對象為Linspire公司,而該公司先前曾受到微軟的商標侵權指控。   這兩家公司曾於2004年達成合解,Linspire答應停止使用Lindows一名稱,而微軟為此支付了2千萬美元。Linspire還獲准使用Windows Media的程式碼,並解決了微軟的商標侵權指控問題。   根據達成之協議,兩方將在包括即時通訊(Instant Messaging)和網路搜尋(Web Search)在內的多個領域展開密切合作。對於購買Linspire付費版的用戶將得到相同的法律保障,以規避任何微軟可能對其採取針對Linux桌面軟體的法律行動。但Linspire未計畫在其免費的Freespire產品中提供微軟的技術,以及任何專利保障。   先前微軟曾表示,在Linux系統上的保護行動已成為其最近一系列“交互授權”合約的一部分,如其與LG、三星(Samsung)和Fuji Xerox簽署的一些專利權交易協定。微軟智權總監David Kaefer表示:「這些協議表明,微軟和眾多Linux供應商正為雙方作業系統間能架起一座橋樑而努力不懈」。這些公司並未在協議裏提及商業利益問題,但Kaefer表示:「很顯然,雙方同時都希望在此協商中獲利」。   協議中,Linspire將把微軟的Live Search作為其Linspire產品的預設搜尋引擎,並將獲准繼續使用包括Windows Media 10程式碼在內的Windows Media技術。   微軟還將准許Linspire在其即時通訊工具中使用其部分字體和IP語音技術,而Linspire也將加入Office 2007的XML檔案格式及OpenDocument格式轉換的研發團隊。

美國聯邦法官裁決AI「訓練」行為可主張合理使用

美國聯邦法官裁決AI「訓練」行為可主張合理使用 資訊工業策進會科技法律研究所 2025年07月07日 確立我國資料創新利用的法制基礎,建構資料開放、共享和再利用的各項機制,滿足民間及政府取得高品質、可信任且易於利用資料的需求,以資料提升我國數位發展的價值,並強化民眾權利的保障,我國於2025年6月16日預告「促進資料創新利用發展條例」,擬推動資料基礎建設,促進更多資料的釋出。 AI發展領先國際的美國,近日首次有聯邦法院對AI訓練資料表達肯定合理使用看法,引發各界關注[1]。我國已開始著力於AI發展所需的資料流通與有效利用,該判決將有助於啟示我國個人資料、著作資料合法使用之法制因應研析。 壹、事件摘要 2025年6月23日美國加州北區聯邦地方法院(United States District Court for the Northern District of California),威廉·阿爾斯法官(Judge William Alsup)針對Andrea Bartz、Charles Graeber、Kirk Wallace Johnson這三位美國作家,對Anthropic公司訓練大型語言模型(Large Language Model, LLM)時使用受其等著作權保護書籍一案,作出指標性的簡易裁決(summary judgment)[2]。 此案被告掃描所購買的實體書籍,以及從盜版網站複製取得的受著作權保護的書籍,儲存在其數位化、可搜尋的檔案中,用來訓練其正在開發的各種大型語言模型。原告主張被當開發Claude AI模型,未經授權使用大量書籍作為訓練資料的行為,為「大規模未經授權利用」。法院則以四要素分析架構,支持合理使用抗辯(Fair Use Defense),強調AI訓練屬於技術發展過程中不可或缺的資料利用,AI公司於模型訓練階段使用著作權書籍,屬於「合理使用」(Fair Use),且具「高度轉化性」(Highly Transformative),包括將購買的實體圖書數位化,但不包括使用盜版,也不及於建立一個永久性的、通用目的的「圖書館(library)」(指訓練資料集)。 貳、重點說明 依美國著作權法第107條(17 U.S.C. § 107)規定,合理使用需綜合考量四要素,法官於本案中認為: 一、使用的目的與性質—形成能力具高度轉化性 AI模型訓練的本質在於學習語言結構、語意邏輯,而非單純複製或重現原著作。AI訓練過程將大量內容作為輸入,經由演算法解析、抽象化、向量化,最終形成轉個彎創造出不同的東西 (turn a hard corner and create something different) 的能力,屬於一種「學習」與「再創造」過程。AI訓練的目的並非為了重現原著作內容,而是為了讓模型具備生成新內容的能力。這種「轉化性」(transformative use)極高,與單純複製或替代原著作的行為有明顯區隔[3]。 另外訓練過程對資料做格式變更本身並未增加新的副本,簡化儲存並實現可搜尋性 (eased storage and enabled searchability),非為侵犯著作權人合法權益目的而進行,亦具有轉化性 (transformative)。原告就所購買的紙本圖書,有權按其認為合適的方式「處置 (dispose)」,將這些副本保存在其資料集中,用於所有一般用途[4]。 二、受保護作品的性質--高度創作性非關鍵因素 法院認同原告所主張的書籍是具有高度創意(creative)的作品理應享有較強的保護。但法院亦認為合理使用的四個要素,須為整體衡量,儘管作品本身具有較高的創意性,但由於使用行為的高度轉化性以及未向公眾直接重製原作表達,整體而言,法院認定用於訓練 LLM 的行為構成合理使用[5]。 三、使用的數量與實質性--巨大數量係轉化所必要 法院認為AI模型訓練需大量內容資料,甚至必須「全書」輸入,看似「大量使用」,但這正是AI技術本質所需。AI訓練是將內容進行抽象化、數據化處理,最終在生成新內容時,並不會原封不動重現原作。所以,雖然訓練過程涉及全部作品,但AI模型的輸出並不會重現原作的具體表達,這與單純複製、重製作品的行為有本質區別[6]。 四、對潛在市場或價值的影響 本案法院明確指出,人工智慧模型(特別是原告的Claude服務)的輸出內容,通常為全新生成內容,並非原作的精確重現或實質模仿冒,而且Claude服務在大型語言模型(LLM)與用戶之間加入額外功能,以確保沒有侵權輸出提供予用戶。因此,此類生成內容不構成對原作的替代,不會削弱原作的銷售市場,也不會造成市場混淆,而且著作權法保護的是原創而非保護作者免於競爭[7]。 不過即便法院支持被告的合理使用主張,肯定AI訓練與著作權法「鼓勵創作、促進知識流通」的立法目的相符。但仍然指出提供AI訓練的合理使用(Fair Use)不代表資料來源的適法性(Legality of Source)獲得合法認定。沒有任何判決支持或要求,盜版一本本來可以在書店購買的書籍對於撰寫書評、研究書中的事實或創建大型語言模型 (LLM) 是合理必要 (reasonably necessary) 的。此類對原本可(合法)取得的圖書進行盜版的行為,即使用於轉化性使用並立即丟棄,「本質上」、「無可救藥地」(inherently、irredeemably)構成侵害[8]。 參、事件評析 一、可能影響我國未來司法判決與行政函釋 我國於現行著作權法第65條規定下,須於個案交予我國法院認定合理使用主張是否能成立。本案判決為美國首個AI訓練行為可主張合理使用的法院見解,對於我國法院未來就對AI訓練資料取得的合法使用看法,顯見將會產生關鍵性影響。而且,先前美國著作權局之報告認為AI訓練過程中,使用受著作權保護作品可能具有轉化性,但利用結果(訓練出生成式AI)亦有可能影響市場競爭,對合理使用之認定較為嚴格,而此裁定並未採取相同的見解。 二、搜取網路供AI訓練資料的合理使用看法仍有疑慮 依據本會科法所創智中心對於美國著作權法制的觀察,目前美國各地法院中有多件相關案件正在進行審理,而且美國著作權局的合理使用立場較偏向有利於著作權利人[9]。相同的是,均不認同自盜版網站取得的資料可以主張合理使用。然而AI訓練所需資料,除來自於既有資料庫,亦多來自網路搜取,如其亦不在可主張範圍,那麼AI訓練的另一重要資料來源可能會受影響,後續仍須持續觀察其他案件判決結果。 三、有效率的資料授權利用機制仍是關鍵 前揭美國著作權局報告認為授權制度能同時促進產業發展並保護著作權,產業界正透過自願性授權解決作品訓練之方法,雖該制度於AI訓練上亦尚未為一完善制度。該裁決也指出,可合理使用資料於訓練AI,並不代表盜版取得訓練資料可以主張合理使用。這對於AI開發而言,仍是須要面對的議題。我國若要發展主權AI, 推動分散串接資料庫、建立權利人誘因機制,簡化資料查找與授權流程,讓AI訓練資料取得更具效率與合法性,才能根本打造台灣主權AI發展的永續基礎。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]相關新聞、評論資訊,可參見:Bloomberg Law, "Anthropic’s AI Book-Training Deemed Fair Use by US Judge", https://news.bloomberglaw.com/ip-law/ai-training-is-fair-use-judge-rules-in-anthropic-copyright-suit-38;Anthropic wins a major fair use victory for AI — but it’s still in trouble for stealing books, https://www.theverge.com/news/692015/anthropic-wins-a-major-fair-use-victory-for-ai-but-its-still-in-trouble-for-stealing-books;Anthropic Scores a Landmark AI Copyright Win—but Will Face Trial Over Piracy Claims, https://www.wired.com/story/anthropic-ai-copyright-fair-use-piracy-ruling/;Anthropic Wins Fair Use Ruling In Authors' AI Copyright Suit, https://www.thehindu.com/sci-tech/technology/anthropic-wins-key-ruling-on-ai-in-authors-copyright-lawsuit/article69734375.ece., (最後閱覽日:2025/06/25) [2]Bartz et al. v. Anthropic PBC, No. 3:24-cv-05417-WHA, Doc. 231, (N.D. Cal. June 23, 2025),https://cdn.arstechnica.net/wp-content/uploads/2025/06/Bartz-v-Anthropic-Order-on-Fair-Use-6-23-25.pdf。(最後閱覽日:2025/06/25) [3]Id. at 12-14. [4]Id. at 14-18. [5]Id. at 30-31. [6]Id. at 25-26. [7]Id. at 28. [8]Id. at 18-19. [9]劉家儀,美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?https://stli.iii.org.tw/article-detail.aspx?no=0&tp=1&d=9352。

TOP