歐盟十五個會員國為強化對抗恐怖攻擊、跨邊境犯罪及非法遷徙之國際合作,於2007年3月28日提出有關資料分享的立法草案,以期歐盟能夠建立一套資料分享的機制與架構。立法草案明確規範了各成員國就資料保護所應給予的等級,其必須保證個人資料保護必須達到與1980年歐洲理事會(Council of Europe)通過的「保護自動化處理個人資料公約(Convention for the Protection of Individuals with Regard to Automatic Processing of Personal Data)」及其於2001年通過的附加議定書相同等級。
該立法草案係根據「Prüm條約」而來,其條約簽署背景為2004年馬德里的恐怖組織炸彈攻擊事件,有鑑打擊恐怖攻擊及跨國犯罪之國際合作,歐盟七個會員國於2005年5月27日在德國、比利時及盧森堡邊境的城市Prüm,簽訂了該條約。條約中規定,簽署國之警察及刑事追訴機關執法於恐怖攻擊及跨邊境犯罪時,得向他簽署國處理相關資料之單位請求有關DNA之分析資料、指紋及相關車籍資料。
目前,歐盟資料保護監督機構(European Data Protection Supervisor)已背書支持建立該機制與架構,並且聲明表示,該架構之建立,仍應注意資料保護的相關事項,在追求資料分享更為便利的同時,應給予人民更為足夠的保護,再者,資料處理的權責單位對於不同的資料類型,也應以不同的方式處理之,越敏感性的資料越應限制其使用目的,並且讓越少人得以接觸。
本文為「經濟部產業技術司科技專案成果」
隨著NFT持續延燒,韓國不少藝術家選擇透過NFT之模式進行數位交易。然2021年11月,韓國金融監督委員會認為NFT不屬於數位資產,也不承認NFT相關之數位交易。根據韓國聯合新聞通訊社(YNA)2022年7月14日報導,韓國科學技術情報通信部( MSIT)與韓國網路振興院(KISA)宣布成立元宇宙/NFT安全委員會,以檢查元宇宙和NFT等虛擬融合經濟的傳播所產生的新安全問題,並強化產業合作。 該委員會由該國元宇宙和NFT相關的平台公司、安全產業、合作社組成,旨在振興安全可靠的虛擬融合經濟產業,分析和共享網絡威脅、安全技術及損失案例,並針對各種安全問題尋求主動響應和解決方案。 虛擬數位資產本身存有爭議,加上公鏈Terra的崩盤造成韓國28萬名投資人遭受巨大損失,使作為主管機關的韓國金融委員會(FSC)和金融監督院(FSS)壓力倍增,宣布制定《數位資產基本法》大綱框架,目前此法將加密資產定義為非法幣資產、非金融商品資產之「第三類資產」,並強調未來將有加密資產委員會進行專門管理。韓國擬積極加強監管虛擬數位資產,擬徹底管理加密投資風險,並加強監管杜絕非法吸金與場外交易。《數位資產基本法》預計於2023年上路。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
性隱私內容外流風波-從美國立法例論我國違反本人意願散布性隱私內容之入罪化 美國國家標準暨技術研究院規劃建立「人工智慧風險管理框架」,並徵詢公眾對於該框架之意見美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)為管理人工智慧對於個人、組織以及社會所帶來之風險,於2021年7月29日提出將建立「人工智慧風險管理框架」(Artificial Intelligence Risk Management Framework, AI RMF)之規畫並徵詢公眾意見,截止日為9月15日,並預計於10月發布正式報告。 依照NIST說明,公眾所建議之人工智慧風險管理框架,可促進人工智慧之可信賴性,其中包含如何應對並解決人工智慧於設計、發展及使用過程中所遭遇之「精確度」(accuracy)、「可解釋性」(explainability)、「偏見」(bias)等議題。此外,上開管理框架預計為非強制性、供企業自願性使用於人工智慧設計、發展、使用、衡量及評估之人工智慧標準。 依現有公眾意見徵詢結果,其中DeepMind公司建議於人工智慧設計初期,必須預先構思整體系統之假設是否符合真正社會因果關係。舉例言之,當設計一套可預測民眾健保需求程度之系統時,如輸入參數僅考量民眾於醫療上的花費,將使僅有可負擔較高醫療費用之民眾被歸類為健保需求程度較高者,從而導致健保制度排擠經濟負擔程度較差之公民,故在設計系統時,應從預先設定之假設事實反面(counter-factual)思考並驗證是否會產生誤差或公平性之問題(例如預先思考並驗證「醫療費用支出較低之民眾是否即可被正確歸類為健保需求度低之民眾」)。惟進行上述驗證需要大量社會資料,因此DeepMind也建議NIST應建立相關機制,使這些社會資料可以被蒐集、使用。 此外,亦有民眾建議管理框架應有明確之衡量方法以及數值指標,以供工程界遵循。同時鑒於人工智慧發展極為快速,未來可能有不同於以往之人工智慧類型出現,故亦建議NIST應思考如何在「建構一套完整且詳細之人工智慧治理框架」與「保持人工智慧治理框架之彈性與靈活性」之間取得平衡。 最後,目前也有許多徵詢意見指出,許多人工智慧治理之目標會相互衝突。舉例言之,當NIST要求人工智慧系統應符合可解釋性,則人工智慧公司勢必需要經常抽取人工智慧系統中之「數據軌跡」(audit logs),惟數據軌跡可能被認為是使用者之個人資料,因此如何平衡或完善不同治理框架下之目標,為未來應持續關注之議題。
美國國家安全局發布「軟體記憶體安全須知」美國國家安全局(National Security Agency, NSA)於2022年11月10日發布「軟體記憶體安全須知」(“Software Memory Safety” Cybersecurity Information Sheet),說明目前近70%之漏洞係因記憶體安全問題所致,為協助開發者預防記憶體安全問題與提升安全性,NSA提出具體建議如下: 1.使用可保障記憶體安全之程式語言(Memory safe languages):建議使用C#、Go、Java、Ruby、Rust與Swift等可自動管理記憶體之程式語言,以取代C與C++等無法保障記憶體安全之程式語言。 2.進行安全測試強化應用程式安全:建議使用靜態(Static Application Security Testing, SAST)與動態(Dynamic Application Security Testing, DAST)安全測試等多種工具,增加發現記憶體使用與記憶體流失等問題的機會。 3.強化弱點攻擊防護措施(Anti-exploitation features):重視編譯(Compilation)與執行(Execution)之環境,以及利用控制流程防護(Control Flow Guard, CFG)、位址空間組態隨機載入(Address space layout randomization, ASLR)與資料執行防護(Data Execution Prevention, DEP)等措施均有助於降低漏洞被利用的機率。 搭配多種積極措施增加安全性:縱使使用可保障記憶體安全之程式語言,亦無法完全避免風險,因此建議再搭配編譯器選項(Compiler option)、工具分析及作業系統配置等措施增加安全性。