根據2005年一項統計調查指出,員工超過一千人的公司中,36.1%對員工從公司內部外寄的電子郵件加以監視,而同時亦有26.5%的公司正準備對員工由公司內部發送的電子郵件加以監視。若是以員工超過二萬人的公司來看,更有高達40%的公司已然利用過濾科技對員工外寄的電子郵件加以監視,而正準備利用相關科技對員工外寄的電子郵件加以監視的公司亦高達32%。
然而根據歐洲人權法院近日所做出的判決,不論公司是否訂有清楚的員工使用政策,一旦公司並未告知員工其在公司內的通訊或電子郵件往來可能會受到公司的監視,則該公司將可能違反歐洲人權公約(European Convention on Human Rights)。
該案例乃是由於一位任職於英國南威爾斯之卡馬森學院(Carmarthenshire College)的員工—Lynette Copland發現自己的網路使用情形及電話均遭到工作單位之監視,憤而向歐洲法院提出告訴。由於卡馬森學院並未提醒員工在工作場合之電子郵件、電話或其他通訊可能遭到監視,因此Lynette Copland之律師主張當事人在工作場合之電話、電子郵件、網路使用等其他通訊都應具有合理的隱私權期待,而受到歐洲人權公約第8條的保障。歐洲法院判決Lynette Copland可獲得約5910美元之損害賠償以及1,1820美元之訴訟費用。
經查,韓國《不正當競爭預防和營業秘密保護法》(下稱UCPA)之修正案於2024年1月國會通過、2月公布,預計將於8月21日生效。旨在加強對於營業秘密侵權行為的法規監管與處罰力度,故本次修訂以營業秘密相關規定之修正為主,以其他修正(如商標、標誌、地理標示誤用、侵權或其他不公平競爭行為)為輔,本文摘要如下: 一、與營業秘密相關 (一)懲罰性賠償之加重:根據第14-2條第6項規定,針對「故意」營業秘密侵權行為,將懲罰性賠償從3倍上修到5倍。 (二)增加營業秘密侵權行為之監管與罰責:新增第9-8條規定,將「任何人在未經正當授權或超越授權範圍的情況下,不得損害、破壞或改變他人的營業秘密」納入規範,如有違反,將透過新增之第18條第3項規定課予最高10年監禁或最高5億韓元的罰款。 (三)加強對於企業(組織犯罪)之管制效力:基於修法前法人與自然人之罰款數額相同、企業的追訴時效短於自然人,造成難以抑止組織犯罪行為,故新增第19條規定,使企業罰款最高可處自然人罰款3倍,並新增第19-2條規定,將對企業的公訴時效延長至10年(與自然人之訴訟時效同)。 (四)新增沒收規定:依據修法前規定,即使透過UCPA提起訴訟,且侵權人承認侵權,但因為缺乏沒收規定(需要另外依據民事訴訟法才能對犯罪所得進行沒收),導致防止二次侵權損害之效果有限,故修法後透過第18-5條之規定納入可沒收特定營業秘密所得之規定。 二、其他修正 以下兩項修正之對象涉及第2條第1項第1款、第3條、第3-2條第1款(主要為商標、標誌、地理標示等誤用、侵權或其他不公平競爭行為),並不包括營業秘密(營業秘密第2條第1項第2款以下): (一)加強行政機關的職權:根據第8條規定,關於上述違規行為,相較修法前行政機關僅能提出「建議」(無強制力),修法後特別賦予智慧財產局(KIPO)可以「下令糾正」(시정을 명할 수 있다)之權利,即若未有正當理由依命令糾正者可依照第8條、第20條第1項第1、2款規定公布違反行為及糾正之建議或命令的內容,並對其進行罰款。 (二)法院查閱行政調查記錄的權力的擴張與限制:根據第14-7條規定賦予法院職權,即在法院在特定訴訟中認為必要時,可以要求相關行政單位向法院提出其依據第7條執行的調查紀錄(包括案件當事人的審問筆錄、速記紀錄及其他證據等),若相關紀錄涉及營業秘密,當事人或其代理人可向法院申請就查閱範圍、閱覽人數等進行限制。 綜上所述,可以發現此次修法除了加強法規的監管、處罰力度,顯示近年重視營業秘密爭議外,更特別修訂針對企業、法人等組織犯罪相關規定(如賠償金額的增加,甚至處罰力度大於自然人、訴訟時效的延長等),間接強調企業、法人等組織對於營業秘密侵權有內部管理與監督之責任,若參照資策會科法所創意智財中心於2023年發布之「營業秘密保護管理規範」對於企業內部管理與監督如何落實之研究,係透過將管理措施歸納成(包括從最高管理階層角色開始的整體規劃建議、營業秘密範圍確定、營業秘密使用行為管理、員工管理、網路與環境設備管理、外部活動管理,甚至是後端的爭議處理機制,如何監督與改善等)十個單元的PDCA管理循環,旨在提供企業作為機制建立之參考或自我檢視機制完善性的依據,期冀促進企業落實營業秘密管理。 本文同步刊登於TIPS網(https://www.tips.org.tw)
美國FDA發佈食品安全現代化法(FSMA)之產品安全建議規則(PSPR)最終版在農產品業,食品安全在所有人的心中佔了極重要的位置。美國食品及藥物管理局(Food and Drug Administration,下稱FDA)在2015年9月發佈了食品安全現代化法(Food Safety Modernization Act;下稱FSMA)之產品安全建議規則(Produce Safety Proposed Rule;下稱PSPR)的最終版(final rule)。該規則的發布,預將使零售商尋找供應商的方向,轉變為以有遵守FSMA的供應商作為交易的對象。 PSPR主要是在規定人類消費之蔬果產品生長、繁殖、包裝、販售之規則。新增規範重點如下: 1. 農業用水(Agricultural Water):針對農業用水之品質標準、水質測試方式,作出規範。 2. 生物土壤改良(Biological Soil Amendments):對於改良土壤可能使用到之肥料或相關之微生物,作出規範。 3. 抽芽(Sprouts):對於植物在抽芽時相關預防微生物汙染、微生物測試,作出規範。 4. 馴養動物與野生動物(Domesticated and Wild Animals):針對在農場內放牧之動物,或用來幫助耕作動物之管理,作出規範。 5. 人員訓練、健康與衛生管理(Worker Training and Health and Hygiene):針對相關人員之教育訓練、衛生管理以及健康,作出規範。 6. 設備、工具與建築物(Equipment, Tools and Buildings):為了預防生產過程中可能遭受汙染之情況,對於硬體設備作出規範。 FSMA是美國第一個關於食品安全之立法,美國農業部(Department of Agriculture;USDA)為了讓零售商或中盤商更了解其自身對食品安全之需求以找尋適合之供應商,更預計在2016年春季推行集團優良農業作業準則前導計畫( Group Gap Pilot Program),提供第三方認證服務,以確認農產品所有之作業都有遵守FSMA及FDA之建議。
什麼是日本研究組合?所謂的技術研究組合乃以試驗研究為目的,以「開發業界共同關鍵技術」為主要目的之非營利性質法人,日本至今共成立了兩百多個研究組合,主要透過專法創設之特殊性質法人制度,並賦予技術研究組合諸多稅賦優惠。在組織上,賦予技術研究組合亦有組織變更、分割及合併之可能,技術研究組合得以分割或轉換為公司,將研究成果直接轉化為產業化應用,技術組合之特色有以下幾點: 1.研究組合須至少二人以上之組合員發起:除企業公司外,日本國立大學法人與產業技術研究法人亦可為組合員 ,凡從事產業技術研發政府研究單位與國立大學,皆可將人力資源、研發成果投入與產業合作之技術研發活動,並從事進行試驗研究管理成果、設施使用與技術指導等事業活動 2.研究組合研發活動可運用「產業合作」、「產官學共同研發」兩種模式進行:未來技術研發組合進行組織變更成為股份有限公司時,大學或產業技術研究法人組合員亦可獲得公司股份,增加學研界加入技術研究組合誘因。3.研究組合組織型態彈性利於研發成果事業化應用:技術組合可視情況進行組織變更、合併與分割,就組織型態有更大變更與調整彈性。著眼於技術研究組合若產出相當之研發成果,則可以透過變更為公司型態,迅速將其研發成果予以產業化,亦可透過變更組織型態,而在籌措資金上有更為靈活運用方式使產業活動穩健持續地經營。
日本發布資料素養指南之資料引領判斷篇,旨在呼籲企業透過資料分析結果改善並優化企業經營日本獨立行政法人情報處理推進機構於2025年7月發布《資料素養指南(下稱《指南》)》,指南分為三大章,第一章為整體資料環境之變化;第二章為資料治理;第三章為資料、數位技術活用案例與工具利用。指南第二章中的資料引領判斷篇,主要為呼籲企業透過資料分析結果改善企業經營。 《指南》資料引領判斷篇指出,在進行資料驅動的判斷流程時,需留意三點事項,分述如下: (一) 提出假說、驗證並進行決策 首先盤點利害關係人,蒐集各自的需求與課題,考量可以適用的技術與服務,並以此為基礎提出與事業相關的假說。其次,盤點必要資料並確認其利用可能性,同時針對所缺乏的資料進行取得可能性之評估。下一步,以所取得的資料為基礎進行假說與資料分析結果之驗證。而後,將假說與資料分析結果的驗證成果提供給利害關係人,並以利害關係人的意見為基礎,進行追加資料的取得並同時修正假說內容。最後,基於資料分析結果進行決策。 (二) 判斷決策所必要之資料的信賴性 企業在盤點必要之資料以進行分析並據此進行決策時,由於資料沒有達到特定數量無法用於分析、資料蒐集需花費時間成本,且判斷時點有時亦有其時效性,因此,在確保必要之資料時,會先檢視企業內部所持有之資料,而後確認政府機關的公開資料,如仍缺乏必要之資料,則會確認從資料市場取得之可能性等。在確保必要之資料後,則會判斷決策所必要之資料的信賴性,其主要分為兩點,一為針對資料本身之信賴性,包含資料是否有偏頗、對於資料產出者的信賴性以及資料取得日期、地區等;一為資料傳輸、編輯的信賴性,包含對於資料仲介者的信賴性、資料編輯程式以及資料整合方針。在無法完全確保資料的信賴性時,則會透過相關聯的資料進行資料正確性的檢驗。 (三) 服務導入與監視 資料分析並不僅侷限於現在資料的分析,亦會涵蓋未來資料的預測。舉例而言,自動駕駛資料不僅會分析車輛狀況以及周圍狀況,亦會預測並自動判斷是否需要剎車。透過資料分析結果導入服務後,亦應透過監視檢視決策成效,方法包含滿意度調查、平均使用時間調查等,並針對調查結果進行改善。 我國企業如欲將其所持有之資料用於分析並依照分析結果進行企業經營決策,除可參考日本所發布之《指南》資料引領判斷篇建立內含PDCA四面向之管理制度以外,亦可參考資訊工業策進會科技法律研究所創意智財中心所發布之《重要數位資料治理暨管理制度規範》,針對自身所持有之資料建立包含PDCA四面向之管理制度。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)