有鑑於目前美國的廣播電視系統所使用的698-806 MHz 頻譜波段(一般稱作700MHz頻段),預計在由類比式的電視系統轉換至數位電視系統後,該頻段可完全地為各類無線服務所使用,包括公共安全以及商業服務,聯邦通訊傳播委員會(Federal Communications Commission, FCC)在2007年4月25日對此採納了「報告與命令」(Report and Order)以及「規則制訂建議的進一步通告」(Further Notice of Proposed Rulemaking )等文件作為相關規範。
關於700 MHz頻段的使用,目前FCC正朝下列三個面向來規劃:
(1) 在商用服務方面,FCC以不同經濟規模的區域(如都會區、較大的經濟區塊等)來決定執照的發放,同時也制訂了如功率限制及其他的技術性規範。
(2)在保護頻道(Guard Bands)方面,FCC將改變目前在次級市場方面的租賃管理制度,使取得執照的業者在保護頻道的使用上更有彈性與效率;
(3) 在公共安全頻段方面,FCC認為藉著更多頻段的釋放,使全國不同的網路(包括寬頻與窄頻)皆能全面達成互連,使危難發生時更得以發揮保障公共安全之功能。
上述相關的規則與建議將使FCC得以拍賣700 MHz頻段中不同用途的執照,並期待在全國性無線寬頻服務的互連方面,營造出更為創新以及符合公共安全的服務環境。
通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章 資訊工業策進會科技法律研究所 2025年08月06日 歐盟人工智慧辦公室(The European AI Office,以下簡稱AIO) 於2025年7月10日提出《人工智慧法案》(AI Act, 以下簡稱AIA法案)關於通用型人工智慧實作的準則[1] (Code of Practice for General-Purpose AI Models,以下簡稱「GPAI實踐準則」),並於其中「透明度 (Transparency)」章節[2],針對歐盟AIA法案第53條第1項(a)、(b)款要求GPAI模型的提供者必須準備並提供給下游的系統整合者 (integrator) 或部署者 (deployer) 足夠的資訊的義務,提出模型文件(Model Documentation)標準與格式,協助GPAI模型提供者制定並更新。 壹、事件摘要 歐盟為確保GPAI模型提供者遵循其AI法案下的義務,並使AIO能夠評估選擇依賴本守則以展現其AI法案義務合規性的通用人工智慧模型提供者之合規情況,提出GPAI實踐準則。當GPAI模型提供者有意將其模型整合至其AI系統的提供者(以下稱「下游提供者」)及應向AIO提供相關資訊,其應依透明度章節要求措施(詳下述)提出符合內容、項目要求的模型文件,並予公開揭露且確保已記錄資訊的品質、安全性及完整性 (integrity)。 由於GPAI模型提供者在AI價值鏈 (AI value chain) 中具有特殊角色和責任,其所提供的模型可能構成一系列下游AI系統的基礎,這些系統通常由需要充分了解模型及其能力的下游提供者提供,以便將此類模型整合至其產品中並履行其AIA法案下的義務。而相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。 AIO指出完整填寫與定期更新模型文件,是履行AIA法案第53條義務的關鍵步驟。GPAI模型提供者應建立適當的內部程序,確保資訊的準確性、時效性及安全性。模型文件所含資訊的相關變更,包括同一模型的更新版本,同時保留模型文件的先前版本,期間至模型投放市場後10年結束。 貳、重點說明 一、制定並更新模型文件(措施1.1) 透明度 (Transparency)章節提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,協助GPAI模型提供者有系統性的整理並提供AIA法案所要求的各項資訊。表格設計考量了不同利害關係人的資訊需求,確保在保護商業機密的同時,滿足監管透明度的要求。 前揭記錄資訊依其應提供對象不同,各欄位已有標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者。適用於下游提供者的資訊,GPAI模型提供者應主動提供(公開揭露),其他則於被請求時始須提供(予AIO或NCAs)。 除基本的文件最後更新日期與版本資訊外,應提供的資訊分為八大項,內容應包括: (一)、一般資訊General information 1.模型提供者法律名稱(Legal name) 2.模型名稱(Model name):模型的唯一識別碼(例如 Llama 3.1-405B),包括模型集合的識別碼(如適用),以及模型文件涵蓋之相關模型公開版本的名稱清單。 3.模型真實性(Model authenticity):提供明確的資訊例如安全雜湊或URL端點,來幫助使用者確認這個模型的來源 (Provenance)、是否真實性未被更動 (Authenticity)。 4.首次發布日(Release date)與首次投放歐盟市場的日期(Union market release date)。 5.模型依賴(Model dependencies):若模型是對一個或多個先前投放市場的GPAI模型進行修改或微調的結果,須列出該等模型的名稱(及相關版本,如有多個版本投放市場)。 (二)、模型屬性(Model properties) 1.Model architecture 模型架構:模型架構的一般描述,例如轉換器架構 (transformer architecture)。 2.Design specifications of the model 模型設計規格:模型主要設計規格的一般描述,包括理由及所作假設。 3.輸出/入的模式與其最大值(maximum size):說明係文字、影像、音訊或視訊模式與其最大的輸出/入的大小。 4.模型總參數量(model size)與其範圍(Parameter range):提供模模型參數總數,記錄至少兩個有效數字,例如 7.3*10^10 參數,並勾選參數(大小)所在範圍的選項,例如:☐>1T。 (三)、發佈途徑與授權方式(Methods of distribution and licenses) 1.發佈途徑Distribution channels:列舉在歐盟市場上使用模型的採用法,包括API、軟體套裝或開源倉庫。 2.授權條款License:附上授權條款鏈結或在要求時提供副本;說明授權類型如: 開放授權、限制性授權、專有授權;列出尚有提供哪些相關資源(如訓練資料、程式碼)與其存取方式、使用授權。 (四)、模型的使用(Use) 1.可接受的使用政策Acceptable Use Policy:附上可接受使用政策連結或副本或註明無政策。 2.預期用途或限制用途Intended uses:例如生產力提升、翻譯、創意內容生成、資料分析、資料視覺化、程式設計協助、排程、客戶支援、各種自然語言任務等或限制及/或禁止的用途。 3.可整合AI系統之類型Type and nature of AI systems:例如可能包括自主系統、對話助理、決策支援系統、創意AI系統、預測系統、網路安全、監控或人機協作。 4.模型整合技術方式Technical means for integration:例如使用說明、基礎設施、工具)的一般描述。 5.所需軟硬體資源Required hardware與software:使用模型所需任何軟硬體(包括版本)的描述,若不適用則填入「NA」。 (五)、訓練過程(Training process) 1.訓練過程設計規格(Design specifications of the training process):訓練過程所涉主要步驟或階段的一般描述,包括訓練方法論及技術、主要設計選擇、所作假設及模型設計最佳化目標,以及不同參數的相關性(如適用)。例如:「模型在人類偏好資料集上進行10個輪次的後訓練,以使模型與人類價值觀一致,並使其在回應使用者提示時更有用」。 2.設計決策理由(Decision rationale):如何及為何在模型訓練中做出關鍵設計選擇的描述。 (六)、用於訓練、測試及驗證的資料資訊(Information on the data used for training, testing, and validation) 1.資料類型樣態Data type/modality:勾選樣態包括文字、影像、音訊、視訊或說明有其他模態。 2.資料來源Data provenance:勾選來源包括網路爬蟲、從第三方取得的私人非公開資料集、使用者資料、公開資料集、透過其他方式收集的資料、非公開合成(Synthetic )資料等。 3.資料取得與選取方式(How data was obtained):取得及選擇訓練、測試及驗證資料使用方法的描述,包括用於註釋資料的方法及資源,以及用於生成合成資料的模型及方法。從第三方取得的資料,如果權利取得方式未在訓練資料公開摘要中披露,應描述該方式。 4.資料點數量Number of data points:說明訓練、測試及驗證資料的大小(資料點數量),連同資料點單位的定義(例如代幣或文件、影像、視訊小時或幀)。 5.資料範疇與特性(Scope and characteristics):指訓練、測試及驗證資料範圍及主要特徵的一般描述,如領域(例如醫療保健、科學、法律等)、地理(例如全球、限於特定區域等)、語言、模式涵蓋範圍。 6.資料清理處理方法(Data curation methodologies):指將獲取的資料轉換為模型訓練、測試及驗證資料所涉及的資料處理一般描述,如清理(例如過濾不相關內容如廣告)、資料擴增。 7.不當資料檢測措施(Measures for unsuitability):在資料獲取或處理中實施的任何方法描述(如有),以偵測考慮模型預期用途的不適當資料源,包括但不限於非法內容、兒童性虐待材料 (CSAM)、非同意親密影像 (NCII),以及導致非法處理的個人資料。 8.可識別偏誤檢測措施(Measures to detect identifiable biases):描述所採取的偵測與矯正訓練資料存在偏誤的方法。 (七)、訓練期間的計算資源(Computational resources (during training)) 1.訓練時間(Training time):所測量期間及其時間的描述。 2.訓練使用的計算量(Amount of computation used for training):說明訓練使用的測量或估計計算量,以運算表示並記錄至其數量級(例如 10^24 浮點運算)。 3.測量方法論(Measurement methodology):描述用於測量或估計訓練使用計算量的方法。 (八)、訓練及推論的能源消耗(Energy consumption (during training and inference)) 1.訓練耗能(Amount of energy used for training)及其計量方法:說明訓練使用的測量或估計能源量,以百萬瓦時表示(例如 1.0x10^2 百萬瓦時)。若模型能源消耗未知,可基於所使用計算資源的資訊估計能源消耗。若因缺乏計算或硬體提供者的關鍵資訊而無法估計訓練使用能源量,提供者應披露所缺乏的資訊類型。 2.推論運算耗能的計算基準 (Benchmarked amount of computation used for inference1)及其方法:以浮點運算表示方式(例如 5.1x10^17 浮點運算)說明推論運算的基準計算量,並提供計算任務描述(例如生成100000個代幣Token)及用於測量或估計的硬體(例如 64個Nvidia A100)。 二、提供GPAI模型相關資訊(措施1.2) 通用人工智慧模型投放市場時,應透過其網站或若無網站則透過其他適當方式,公開揭露聯絡資訊,供AIO及下游提供者請求取得模型文件中所含的相關資訊或其他必要資訊,以其最新形式提供所請求的資訊。 於下游提供者請求時,GPAI模型提供者應向下游提供者提供最新模型文件中適用於下游提供者的資訊,在不影響智慧財產權及機密商業的前提下,對使其充分了解GPAI模型的能力及限制,並使該等下游提供者能夠遵循其AIA法案義務。資訊應在合理時間內提供,除特殊情況外不得超過收到請求後14日。且該資訊的部分內容可能也需要以摘要形式,作為GPAI模型提供者根據AIA法案第53條第1項(d)款必須公開提供的訓練內容摘要 (training content summary) 的一部分。 三、確保資訊品質、完整性及安全性(措施1.3) GPAI模型提供者應確保資訊的品質及完整性獲得控制,並保留控制證據以供證明遵循AIA法案,且防止證據被非預期的變更 (unintended alterations)。在制定、更新及控制資訊及記錄的品質與安全性時,宜遵循既定協議 (established protocols) 及技術標準 (technical standards)。 參、事件評析 一、所要求之資訊完整、格式標準清楚 歐盟AGPAI實踐準則」的「透明度 (Transparency)」提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,從名稱、屬性、功能等最基本的模型資料,到所需軟硬體、使用政策、散佈管道、訓練資料來源、演算法設計,甚至運算與能源消秏等,構面完整且均有欄位說明,而且部分欄位直接提供選項供勾選,對於GPAI模型提供者提供了簡明容易的AIA法案資訊要求合規做法。 二、表格設計考量不同利害關係人的資訊需求 GPAI實踐準則透明度章節雖然主要目的是為GPAI模型提供者對由需要充分了解模型及其能力的下游提供者提供資訊,以便其在產品履行AIA法案下的義務。但相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。因此,表格的資訊標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者,例如模型的訓練、資料清理處理方法、不當內容的檢測、測試及驗證的資料來源、訓練與運算的能秏、就多屬AIO、NCAs有要求時始須提供的資料,無須主動公開也兼顧及GPAI模型提供者的商業機密保護。 三、配套要求公開並確保資訊品質 該準則除要求GPAI模型提供者應記錄模型文件,並要求於網站等適當地,公開提供下游提供者請求的最新的資訊。而且應在不影響智慧財產權及機密商業的前提下,提供其他對使其充分了解GPAI模型的能力及限制的資訊。同時,為確保資訊的品質及完整性獲得控制,該準則亦明示不僅應落實且應保留證據,以防止資訊被非預期的變更。 四、以透明機制落實我國AI基本法草案的原則 我國日前已由國科會公告人工智慧基本草案,草案揭示「隱私保護與資料治理」、「妥善保護個人資料隱私」、「資安與安全 」、「透明與可解釋 」、「公平與不歧視」、「問責」原則。GPAI實踐準則透明度章節,已提供一個重要的啟示—透過AI風險評測機制,即可推動GPAI模型資訊的揭露,對相關資訊包括訓練資料來源、不當內容防止採取做一定程度的揭露要求。 透過相關資訊揭露的要求,即可一定程度促使AI開發提供者評估認知風險,同時採取降低訓練資料、生成結果侵權或不正確的措施。即便在各領域作用法尚未能建立落實配套要求,透過通過評測的正面效益,運用AI風險評測機制的資訊提供要求,前揭草案揭示的隱私、著作、安全、問責等原則,將可以立即可獲得一定程度的實質落實,緩解各界對於AI侵權、安全性的疑慮。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]The European AI Office, The General-Purpose AI Code of Practice, https://digital-strategy.ec.europa.eu/en/policies/contents-code-gpai 。(最後閱覽日:2025/07/30) [2]The European AI Office, Code of Practice for General-Purpose AI Models–Transparency Chapter, https://ec.europa.eu/newsroom/dae/redirection/document/118120 。(最後閱覽日:2025/07/30)
既有建築改善翻新措施─德國政策參考既有建築改善翻新措施─德國政策參考 科技法律研究所 2013年07月11日 壹、事件摘要 內政部於6月20日公布資訊指出,我國為達成環境永續發展之目標,於1999年開始推行綠建築標章評估系統,迄今已有3,943件新建或既有建築,取得綠建築標章或候選綠建築證書,每年皆可有效節水與節電;同時,自2003年起,針對既有中央辦公廳舍及國立大專院校所辦理的改善翻新,亦具有顯著的節能減碳成果。 貳、重點說明 為因應全球暖化與氣候變遷問題,我國針對建築部門推動許多兼顧節能減碳與生態保護的綠建築政策。首先,內政部在1999年針對新建建築之規劃設計,訂定綠建築標章評估系統。行政院另於2001年3月核定「綠建築推動方案」,率先實施對公部門新建及既有建築之綠化工作,內政部並依據該方案實施方針第7條,推動「綠廳舍暨學校改善補助計畫」。接著,為了強化民間產業投入綠建築,行政院再於2008年1月核定「生態城市綠建築推動方案」,依據該方案實施方針第11條「辦理綠建築更新診斷與改造計畫」,繼續推動既有中央辦公廳舍及國立大專院校建築物之改善翻新。此外,為鼓勵民間既有建築參與綠建築改善,並於100年1月訂定內政部獎勵民間綠建築示範作業要點。 由上述政策發展可以看出,我國既有建築之改善翻新,乃循公部門先帶頭示範,再輔以對民間建築給予獎勵補助,與歐美等先進國家政策推動模式一致。 參、事件評析 根據統計,我國既有建築約佔全國建築總量97%,這些早期建造的建築物,於設計規劃之初皆未納入綠建築之概念。因此,雖然許多既有建築仍舊堪用,但建築本身卻普遍存在著高耗能問題。這使得推動既有建築進行改善翻新,提升其能源效率,成為一重要議題。而依內政部公布之資訊,公部門既有建築改善翻新獲得卓越之成效,確實令人欣喜。然而,公部門既有建築畢竟仍屬少數,故如何推動民間既有建築進行改善翻新,會是我國落實綠建築政策的關鍵。在此,本文將介紹德國政府之相關政策,希望能供我國作參考。 在既有建築改善翻新政策中,德國政府同樣先要求公部門建築必須進行改善翻新,以逐年降低其能源消耗量。與此同時,德國政府也認知到有超過75%的既有建築,至今仍未進行改善翻新。因此德國交通、建築暨都市發展部(Bundesministerium für Verkehr, Bau und Stadtentwicklung, BMVBS,簡稱交通部)推出了降低二氧化碳排放的建築改善翻新方案,不僅給予補助,更與德國復興信貸銀行(Kreditanstalt für Wiederaufbau, KfW)合作,提供改善翻新的低利率貸款。 今年6月1日,為了促進民眾積極採取「具體的」改善翻新行動,交通部與德國聯邦經濟暨技術部(Bundesministerium für Wirtschaft und Technologie, BMWi,簡稱經濟部)共同推出建築節能改善翻新的線上評估服務。讓民眾即使在家中,也可以進行節能與節省成本的行動。 該線上評估服務分為三大步驟,首先,必須輸入建築物的狀態。接著,便可以選擇欲改善翻新的項目及措施。最後,系統會產生整體改善翻新的結果,包括改善翻新前後的能源需求狀態、二氧化碳排放量,以及改善翻新所需經費,並提供聯邦、邦政府財政補助及KfW貸款方案的連結。 德國政府希望藉此向民眾傳達改善翻新的好處,在於節能、節省長期的能源成本,並增加建築物之價值。儘管德國政府在此線上評估服務網站上表明,評估結果僅供參考,並無法取代專業能源顧問的具體評估建議。然而,事先透過簡單、便利的線上評估,不僅增加民眾對於既有建築改善翻新的瞭解及興趣,更是進一步驅動民眾尋求專業評估的動力。 由此可知,節能減碳若要具體落實,全面性的規劃絕對是必要的。我國若能以德國的政策為借鏡,給予民眾更多關於既有建築改善翻新的協助,提供更多資訊。相信可以鼓勵更多民眾自主投入既有建築節能之行列,使我國綠建築政策獲得全面性的落實。
美國於2020年12月4日正式施行聯邦《物聯網網路安全法》美國現任總統川普(Donald J. Trump)於美國時間2020年12月4日簽署物聯網網路安全法(IoT Cybersecurity Improvement Act of 2020),針對美國聯邦政府未來採購物聯網設備(IoT Devices)制定了標準與架構。 該法要求美國國家標準技術研究院(National Institute of Standards and Technology, NIST)應依據NIST先前的物聯網指引中關於辨識、管理物聯網設備安全弱點(Security Vulnerabilities)、物聯網科技發展、身分管理(Identity Management)、遠端軟體修補(Remote Software Patching)、型態管理(Configuration Management)等項目,為聯邦政府建立最低安全標準及相關指引。如果使用政府機關所採購或獲取之物聯網設備無法遵守NIST制定的標準或指引,則不得續簽採購、獲取或使用該設備之契約。 安全標準和指引發布後,美國行政管理和預算局(the Office of Management and Budget)應就各政府機關的資訊安全政策對NIST標準的遵守情況進行審查,NIST每五年亦應對其標準進行必要的更新或修訂。此外,為促進第三方辨識並通報政府資安環境弱點,該法要求NIST針對聯邦政府擁有或使用資訊設備的安全性弱點制定通報、整合、發布與接收的聯邦指引。 雖然該法適用範圍限於聯邦政府機關,惟因該法限制聯邦政府機關採購、獲取或使用不符合NIST標準或指引的物聯網設備,將促使民間業者為獲取美國政府訂單而選擇遵循NIST標準,未來該標準可能成為美國物聯網安全的統一標準。
美國國會通過《2022年保護美國智慧財產法》,加強營業秘密保護力道美國國會於2022年12月22日通過《2022年保護美國智慧財產法》(Protecting American Intellectual Property Act of 2022),經美國總統拜登(Joe Biden)於2023年1月5日簽署後正式生效。鑒於近年來美國營業秘密外洩事件頻傳,中國大陸和駭客透過各類方式竊取美國的智慧財產,對美國的經濟和國家安全產生重大危害。因此,共和黨參議員Ben Sasse與民主黨參議員Chris Van Hollen於2020年6月共同提出本法,並於2021年4月提出修正版本,期待美國政府進一步採取保護美國營業秘密的具體措施。 本法授權美國政府對涉及營業秘密重大竊盜的外國人及外國實體(foreign entity)實施制裁。重點包含: 1.要求美國總統每年應向國會提出報告,且第一份報告應於本法正式施行後6個月內提出,報告應列出符合以下條件之外國人、外國實體名稱及外國實體的執行長或董事會成員: (1)故意竊取美國營業秘密,且其行為很可能或已經對美國國家安全、外交、經濟、金融構成重大威脅者; (2)對上述故意竊取美國營業秘密之行為提供重要的財務、物質、技術、商品、服務等支援,或從中獲得利益者。 2.實施制裁 (1)針對外國實體,本法授權美國政府得實施的制裁手段有12項,包含根據國際緊急經濟權力法(International Emergency Economic Powers Act)凍結其資產、將該實體列入美國商務部的出口管制名單(Entity List)、禁止美國金融機構對該實體提供貸款、拒絕向該實體採購、禁止該實體的外匯交易、禁止美國人投資該實體的股票或債券、限制該實體成員入境、將該實體成員驅逐出境等。美國總統應針對名單中的對象實施至少5項制裁,並可對該外國實體之高層實施上述制裁。 (2)針對外國人,制裁手段包含凍結資產、拒絕入境、撤銷簽證等 3.豁免 總統若認為符合美國國家利益,得豁免對外國人及外國實體之制裁,但應於15天內向國會提交豁免的理由。 本法施行後,美國除了既有的《保護營業秘密法》(Defend Trade Secrets Act of 2016)外,將透過上述的制裁手段強化營業秘密的保護力道。 本文同步刊登於TIPS網站(https://www.tips.org.tw)