澳洲隱私保護辦公室(Office of the Australian Information Commissioner, OAIC)專員今年(2016)4月發表聲明認為,在符合特定條件之情形下,亦即,去識別化過程符合OAIC認定之最高標準時,去識別化後之資料不適用「1988隱私法案」(Privacy Act);澳洲企業組織目前所進行之個人資料去識別化,是否已符合「1988隱私法案」之規範要求,OAIC仍持續關注。OAIC近期準備提出去識別化認定標準之指引草案。 澳洲「1988隱私法案」揭示了「澳洲隱私原則」(Australian Privacy Principles, APPs),就非公務機關蒐集、利用、揭露與保存設有規定,APPs第6條更明文限制非公務機關揭露個人資料,於特定情況下,APPs允許個人資料經去識別化後揭露。例如,APPs第11.2條規定,若非公務機關當初之蒐集、利用目的已消失,須以合理方式將個人資料進行銷毀或去識別化。 如非公務機關係合法保有個人資料,即無銷毀或去識別化義務;此外,若所保有個人資料屬健康資料者,因係澳洲政府機關以契約方式委託非公務機關,非公務機關亦無銷毀或去識別化義務。應注意者,APPs原則上禁止非公務機關基於學術研究、公共衛生或安全之目的,主動蒐集個人健康資料 (APPs第16B(2)條),同時亦禁止基於學術研究、公共衛生或安全目的,就保有之個人資料進行去識別化 (APPs第16B(2)(b)條)。如非基於前述目的,且符合APPs第16B(2)條之要件者,非公務機關始得基於研究、公共衛生或安全目的蒐集個人健康資料 (APPs第95A條)。 其他如「稅號指引」(Tax File Number Guidelines)、隱私專員所提「2014隱私(財務信用有關研究)規則」(Privacy Commissioner’s Privacy (Credit Related Research) Rule 2014) 等,均就個人資料去識別化訂有相關規範。 未來以資料為導向之經濟發展,將需堅實的隱私保護作為發展基礎,澳洲去識別化個人資料認定標準之提出,以及標準之認定門檻,殊值持續關注。
美國FDA發布「醫療器材單一識別碼系統」規則草案美國推動醫療器材「單一識別」(Unique Device Identification, UDI)系統已行之有年,藉由建立UDI系統,強化醫療器材錯誤回報(Adverse Event Report)以及上市後產品監督(Post-Market Surveillance)等相關資訊的流通,以保障病人的安全。2007年由美國國會所通過的《食品藥物管理法修正案》(Food and Drug Administration Amendments Act of 2007, FDAAA)第226項,修正《食品、藥物及化妝品法》(Federal Food, Drug, and Cosmetic Act , FD&C Act)新增第519項f款,提供美國食品藥物管理局(U.S. Food and Drug Administration, FDA)訂定「醫療器材單一識別系統」法規之法源基礎。另一方面,在美國國會的要求之下,FDA於2012年7月3日正式發布「醫療器材單一識別碼系統」規則草案,進行公眾預告與評論(Notice and Comment)程序。 FDA長期收集醫療器材產業、醫療社群、病人與消費者,以及產業專家之建議,而將這些建議呈現在規則草案內容中,目的在於減少廠商成本,並順利建置UDI系統,是故草案內容實採取某些公司實際使用的標準與系統經驗。FDA所發布的規則草案重點如下: 1.「單一識別碼」將分為「器材識別碼」(Device Identifier),包含特定器材的單一識別;「生產識別碼」(Production Identifier),包含器材的生產資訊。 2.將採取區分醫療器材風險程度之高低作為標準,分階段置入高風險的醫療器材的「單一識別碼系統」;低風險的醫療器材將有條件在部分或全部的規則中例外免除。 3.免除零售的非處方(Over the Counter)醫療器材適用此規範,係因這些器材尚有統一商品條碼(Universal Product Code, UPC)作為識別。 FDA宣稱,隨著系統的建置與規範的制定,絕大多數的醫療器材將必須具有統一的日期標準,包含標籤上的到期日;亦必須使UDI能夠容易閱讀,且能為系統自動識別與應用資料擷取技術,進一步成為全球UDI資料庫建置的標準。我國目前雖尚無UDI系統的相關法規範,但產業與主管機關已就相關議題進行討論,而FDA所發佈的規則草案之發展歷程,即可作為相關單位在制定法規之參考,藉此瞭解先進國家在此議題之發展,提早與先進國家之標準做接軌。
美國聯邦法官裁決AI「訓練」行為可主張合理使用美國聯邦法官裁決AI「訓練」行為可主張合理使用 資訊工業策進會科技法律研究所 2025年07月07日 確立我國資料創新利用的法制基礎,建構資料開放、共享和再利用的各項機制,滿足民間及政府取得高品質、可信任且易於利用資料的需求,以資料提升我國數位發展的價值,並強化民眾權利的保障,我國於2025年6月16日預告「促進資料創新利用發展條例」,擬推動資料基礎建設,促進更多資料的釋出。 AI發展領先國際的美國,近日首次有聯邦法院對AI訓練資料表達肯定合理使用看法,引發各界關注[1]。我國已開始著力於AI發展所需的資料流通與有效利用,該判決將有助於啟示我國個人資料、著作資料合法使用之法制因應研析。 壹、事件摘要 2025年6月23日美國加州北區聯邦地方法院(United States District Court for the Northern District of California),威廉·阿爾斯法官(Judge William Alsup)針對Andrea Bartz、Charles Graeber、Kirk Wallace Johnson這三位美國作家,對Anthropic公司訓練大型語言模型(Large Language Model, LLM)時使用受其等著作權保護書籍一案,作出指標性的簡易裁決(summary judgment)[2]。 此案被告掃描所購買的實體書籍,以及從盜版網站複製取得的受著作權保護的書籍,儲存在其數位化、可搜尋的檔案中,用來訓練其正在開發的各種大型語言模型。原告主張被當開發Claude AI模型,未經授權使用大量書籍作為訓練資料的行為,為「大規模未經授權利用」。法院則以四要素分析架構,支持合理使用抗辯(Fair Use Defense),強調AI訓練屬於技術發展過程中不可或缺的資料利用,AI公司於模型訓練階段使用著作權書籍,屬於「合理使用」(Fair Use),且具「高度轉化性」(Highly Transformative),包括將購買的實體圖書數位化,但不包括使用盜版,也不及於建立一個永久性的、通用目的的「圖書館(library)」(指訓練資料集)。 貳、重點說明 依美國著作權法第107條(17 U.S.C. § 107)規定,合理使用需綜合考量四要素,法官於本案中認為: 一、使用的目的與性質—形成能力具高度轉化性 AI模型訓練的本質在於學習語言結構、語意邏輯,而非單純複製或重現原著作。AI訓練過程將大量內容作為輸入,經由演算法解析、抽象化、向量化,最終形成轉個彎創造出不同的東西 (turn a hard corner and create something different) 的能力,屬於一種「學習」與「再創造」過程。AI訓練的目的並非為了重現原著作內容,而是為了讓模型具備生成新內容的能力。這種「轉化性」(transformative use)極高,與單純複製或替代原著作的行為有明顯區隔[3]。 另外訓練過程對資料做格式變更本身並未增加新的副本,簡化儲存並實現可搜尋性 (eased storage and enabled searchability),非為侵犯著作權人合法權益目的而進行,亦具有轉化性 (transformative)。原告就所購買的紙本圖書,有權按其認為合適的方式「處置 (dispose)」,將這些副本保存在其資料集中,用於所有一般用途[4]。 二、受保護作品的性質--高度創作性非關鍵因素 法院認同原告所主張的書籍是具有高度創意(creative)的作品理應享有較強的保護。但法院亦認為合理使用的四個要素,須為整體衡量,儘管作品本身具有較高的創意性,但由於使用行為的高度轉化性以及未向公眾直接重製原作表達,整體而言,法院認定用於訓練 LLM 的行為構成合理使用[5]。 三、使用的數量與實質性--巨大數量係轉化所必要 法院認為AI模型訓練需大量內容資料,甚至必須「全書」輸入,看似「大量使用」,但這正是AI技術本質所需。AI訓練是將內容進行抽象化、數據化處理,最終在生成新內容時,並不會原封不動重現原作。所以,雖然訓練過程涉及全部作品,但AI模型的輸出並不會重現原作的具體表達,這與單純複製、重製作品的行為有本質區別[6]。 四、對潛在市場或價值的影響 本案法院明確指出,人工智慧模型(特別是原告的Claude服務)的輸出內容,通常為全新生成內容,並非原作的精確重現或實質模仿冒,而且Claude服務在大型語言模型(LLM)與用戶之間加入額外功能,以確保沒有侵權輸出提供予用戶。因此,此類生成內容不構成對原作的替代,不會削弱原作的銷售市場,也不會造成市場混淆,而且著作權法保護的是原創而非保護作者免於競爭[7]。 不過即便法院支持被告的合理使用主張,肯定AI訓練與著作權法「鼓勵創作、促進知識流通」的立法目的相符。但仍然指出提供AI訓練的合理使用(Fair Use)不代表資料來源的適法性(Legality of Source)獲得合法認定。沒有任何判決支持或要求,盜版一本本來可以在書店購買的書籍對於撰寫書評、研究書中的事實或創建大型語言模型 (LLM) 是合理必要 (reasonably necessary) 的。此類對原本可(合法)取得的圖書進行盜版的行為,即使用於轉化性使用並立即丟棄,「本質上」、「無可救藥地」(inherently、irredeemably)構成侵害[8]。 參、事件評析 一、可能影響我國未來司法判決與行政函釋 我國於現行著作權法第65條規定下,須於個案交予我國法院認定合理使用主張是否能成立。本案判決為美國首個AI訓練行為可主張合理使用的法院見解,對於我國法院未來就對AI訓練資料取得的合法使用看法,顯見將會產生關鍵性影響。而且,先前美國著作權局之報告認為AI訓練過程中,使用受著作權保護作品可能具有轉化性,但利用結果(訓練出生成式AI)亦有可能影響市場競爭,對合理使用之認定較為嚴格,而此裁定並未採取相同的見解。 二、搜取網路供AI訓練資料的合理使用看法仍有疑慮 依據本會科法所創智中心對於美國著作權法制的觀察,目前美國各地法院中有多件相關案件正在進行審理,而且美國著作權局的合理使用立場較偏向有利於著作權利人[9]。相同的是,均不認同自盜版網站取得的資料可以主張合理使用。然而AI訓練所需資料,除來自於既有資料庫,亦多來自網路搜取,如其亦不在可主張範圍,那麼AI訓練的另一重要資料來源可能會受影響,後續仍須持續觀察其他案件判決結果。 三、有效率的資料授權利用機制仍是關鍵 前揭美國著作權局報告認為授權制度能同時促進產業發展並保護著作權,產業界正透過自願性授權解決作品訓練之方法,雖該制度於AI訓練上亦尚未為一完善制度。該裁決也指出,可合理使用資料於訓練AI,並不代表盜版取得訓練資料可以主張合理使用。這對於AI開發而言,仍是須要面對的議題。我國若要發展主權AI, 推動分散串接資料庫、建立權利人誘因機制,簡化資料查找與授權流程,讓AI訓練資料取得更具效率與合法性,才能根本打造台灣主權AI發展的永續基礎。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]相關新聞、評論資訊,可參見:Bloomberg Law, "Anthropic’s AI Book-Training Deemed Fair Use by US Judge", https://news.bloomberglaw.com/ip-law/ai-training-is-fair-use-judge-rules-in-anthropic-copyright-suit-38;Anthropic wins a major fair use victory for AI — but it’s still in trouble for stealing books, https://www.theverge.com/news/692015/anthropic-wins-a-major-fair-use-victory-for-ai-but-its-still-in-trouble-for-stealing-books;Anthropic Scores a Landmark AI Copyright Win—but Will Face Trial Over Piracy Claims, https://www.wired.com/story/anthropic-ai-copyright-fair-use-piracy-ruling/;Anthropic Wins Fair Use Ruling In Authors' AI Copyright Suit, https://www.thehindu.com/sci-tech/technology/anthropic-wins-key-ruling-on-ai-in-authors-copyright-lawsuit/article69734375.ece., (最後閱覽日:2025/06/25) [2]Bartz et al. v. Anthropic PBC, No. 3:24-cv-05417-WHA, Doc. 231, (N.D. Cal. June 23, 2025),https://cdn.arstechnica.net/wp-content/uploads/2025/06/Bartz-v-Anthropic-Order-on-Fair-Use-6-23-25.pdf。(最後閱覽日:2025/06/25) [3]Id. at 12-14. [4]Id. at 14-18. [5]Id. at 30-31. [6]Id. at 25-26. [7]Id. at 28. [8]Id. at 18-19. [9]劉家儀,美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?https://stli.iii.org.tw/article-detail.aspx?no=0&tp=1&d=9352。
GPL(General Public License,通用公共許可證)即將進行更新修訂FSF( Free Software Foundation,自由軟體基金會)於日前公佈,將針對現行版本GPL Version 2進行更新修訂。由於GPL Version 2自1991 年使用至今未曾修改過,隨著軟體開發技術日新月異,新興網路應用議題亦不斷產生,故確時有必要更新修訂。FSF預定在2006年第一週會公布GPL v3草案,詳細說明每一條條文修改的原因及影響,並提供予IT產業、軟體使用者、以及和GPL v3有利害關係的各界人士,共同彙集多方的意見,以期獲得更廣大的效益。 然改寫GPL v3實屬不易。GPL是世界性的授權條款,但現今世界各國的著作權法與專利法等相關法令規範不一,再加上新興的網路應用技術與模式,GPL v3新規範應儘可能將上述要項考量納入增訂,以避免引發爭議;若是相關爭議順利解決的話,預料2007年年初就可將GPL v3擬訂完成。