韓國樂金飛利浦(LPL)在美國加州控告華映(CPT)專利侵害案,自2002年8月起,至今已纏訟五年之久。
LPL控告CPT侵害其4件Side-mount專利(US6,002,457、US5,926,237、US6,373,537、US6,020,942),與2件Process專利(US4,624,737、US5, 825,449)。華映表示,前4件被加州法院以欠缺依據駁回。對此判決,華映表示欣慰。
LPL與華映之間的專利侵權訴訟爭議不休。華映強調,其在尊重智慧財產權的理念下蒐集證據進行因應,加州法院雖以LPL所提Side Mount訴訟欠缺依據(Lack of Standing)下令駁回LPL訴訟,但就另二件Process專利部份,目前法院對於雙方所提交之post trial motion作出部份同意及部份駁回的決定(Order),但法院尚未做出正式判決。
彭博社報導已傳出,美國洛杉磯聯邦法院網站已公佈裁決文,並同意LPL對華映加重侵權賠償的請求,以及持續侵權與判決前和判決後之利益與法律費用賠償。但並未透露加重賠償之確切金額。就此,華映發表聲明指出,對法官准許LPL部分訴求的初步決定,感到遺憾。華映表示其已掌握證據,待收到法院正式判決後將積極因應,且不排除上訴。
雖然微軟才針對「Internet Explorer」弱點「CVE-2012-1875」剛公佈修補程式不久,但針對「CVE-2012-1875」的為攻擊目標的網路攻擊正在發生。 因為作業準則(PoC)也已經公佈,有可能會發展成大規模的網路攻擊。日本IBM的Tokyo SOC也已經確認發生針對脆弱性的惡意攻擊,並將攻擊的報告公佈在該中心的部落格上。經該中心分析現在攻擊的範圍雖然「非常限縮」,但是標的型攻擊的可能性非常的高。 也正因為作業準則(PoC)也已經公佈,也將被預測到發生大規模攻擊,微軟也呼籲儘速下載修補程式對程式弱點進行修補,避免遭到攻擊 。 微軟針對「CVE-2012-1875」的弱點在6月13日每月定期公佈的資訊安全性更新程式「MS12-037」進行修補。在6月13日公佈的時間點雖然已經確認發生惡意攻擊的資訊安全安事件,也已經透過非公開管道向微軟報告,但微軟並沒有公開確認弱點的存在。
德國禁種MON810爭議,行政法院裁定有理由,支持主管機關禁種決定跨國農業生技公司Monsanto研發的MON810品系抗蟲基因改造玉米,於今(2009)年4月中旬遭到德國農業生技的主管機關-聯邦營養、農業與消費者保護局(Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz, BMELV)援引歐盟基因改造生物環境釋出指令(EU-Freisetzungsrichtlinie)中的防衛條款,加以禁種。 雖然Monsanto隨即對BMELV此項決定提出行政訴訟,但Braunschweig行政法院在5月初作出的暫時性裁定,支持了BMELV此項決定。法院基於兩大理由,裁定BMELV之禁種決定並非無據:(1)只要有新的或進一步的資訊出現,支持基因改造作物可能會對人體或動物健康造成損害,即可支持主管機關作出禁止種植已經取得歐盟上市許可的基因改造作物之決定之論據,不需要存在有必然會有風險的科學知識。(2)據此論據進行風險調查及風險評估,乃主管機關之執掌,主管機關對此有裁量權(Beurteilungsspielraum),從而,法院介入審查該行政決定的重點,在於主管機關是否已為充分的風險調查、有無恣意論斷風險。本案目前尚非終局之決定,Monsanto仍可對於此項裁定提出抗告。 在歐盟,基因改造生物的上市需透過歐盟程序為之,一旦歐盟執委會允許某一基因改造生物的上市,該基因改造生物原則上即可在全體歐盟會員國推廣銷售,包括種植。唯歐盟環境釋出指令例外容許會員國得於一定條件下,援引防衛條款主張已通過歐盟審查的基因改造生物,對於其境內環境或人體與動植物健康有負面影響,從而禁止特定已取得歐盟上市許可的基因改造生物於其境內流通。防衛條款的動用屬例外情形,且須定期接受歐盟層級的審查。
英國資訊委員辦公室提出人工智慧(AI)稽核框架人工智慧(Artificial Intelligence, AI)的應用,已逐漸滲透到日常生活各領域中。為提升AI運用之效益,減少AI對個人與社會帶來之負面衝擊,英國資訊委員辦公室(Information Commissioner’s Office, ICO)於2019年3月提出「AI稽核框架」(Auditing Framework for Artificial Intelligence),作為確保AI應用合乎規範要求的方法論,並藉機引導公務機關和企業組織,評估與管理AI應用對資料保護之風險,進而建構一個可信賴的AI應用環境。 AI稽核框架主要由二大面向所構成—「治理與可歸責性」(governance and accountability)以及「AI特定風險領域」(AI-specific risk areas)。「治理與可歸責性」面向,係就公務機關和企業組織,應採取措施以遵循資料保護規範要求的角度切入,提出八項稽核重點,包括:風險偏好(risk appetite)、設計階段納入資料保護及透過預設保護資料(data protection by design and by default)、領導管理與監督(leadership management and oversight)、政策與程序(policies and procedures)、管理與通報架構(management and reporting structures)、文書作業與稽核紀錄(documentation and audit trails)、遵循與確保能力(compliance and assurance capabilities)、教育訓練與意識(training and awareness)。 「AI特定風險領域」面向,則是ICO特別針對AI,盤點下列八項潛在的資料保護風險,作為風險管理之關注重點: 一、 資料側寫之公平性與透明性(fairness and transparency in profiling); 二、 準確性(accuracy):包含AI開發過程中資料使用之準確性,以及應用AI所衍生資料之準確性; 三、 完全自動化決策模型(fully automated decision making models):涉及人類介入AI決策之程度,歐盟一般資料保護規則(General Data Protection Regulation, GDPR)原則上禁止無人為介入的單純自動化決策; 四、 安全性與網路(security and cyber):包括AI測試、委外處理資料、資料重新識別等風險; 五、 權衡(trade-offs):不同規範原則之間的取捨,如隱私保護與資料準確性; 六、 資料最少化與目的限制(data minimization and purpose limitation); 七、 資料當事人之權利行使(exercise of rights); 八、 對廣泛公共利益和權利之衝擊(impact on broader public interests and rights)。 ICO將持續就前述AI特定風險領域,進行更深入的分析,並開放公眾討論,未來亦將提供相關技術和組織上之控制措施,供公務機關及企業組織進行稽核實務時之參考。
日本產業競爭力強化法簡介—以新事業活動特例制度為中心