美國國家情報體系(United States Intelligence Community)係於1981年依據行政命令第12333號(Executive Order 12333)所建立,其任務為蒐集、分析與提供外國情報與反情報資訊美國國家領導人,服務對象包含美國總統、執法單位以及軍事單位。其於2020年6月提出「情報體系人工智慧倫理架構」(Artificial Intelligence Ethics Framework for the Intelligence Community),為人工智慧系統與訓練資料、測試資料之採購、設計、研發、使用、保護、消費與管理提出指引,並指出人工智慧之利用須遵從以下事項: 一、於經過潛在風險評估後,以適當且符合目的之方法利用; 二、人工智慧之使用應尊重個人權利與自由,且資料取得應合法且符合相關政策與法規之要求; 三、應於利用程序內結合人類判斷與建立問責機制,以因應AI產品之風險並確保其決策之適當性。 四、於不破壞其功能與實用性之前提下,盡可能確認、統計以及降低潛在之歧視問題。 五、AI進行測試時應同時考量其未來利用上可預見之風險。 六、持續維持AI模型之迭代(Iteration)、版本與改動之審查。 七、AI之建立目的、限制與設計之輸出項目,應文件化。 八、盡可能使用可解釋與可理解之方式,讓使用者、審查者與公眾理解為何AI會產出相關決策。 九、持續不定期檢測AI,以確保其符合當初建置之目的。 十、確認AI於產品循環中各階段之負責人,包含其維護相關紀錄之責任。
日本名古屋地方法院強調刑事手段對於營業秘密保護的必要性日本名古屋地方法院(下稱法院)在2022年3月18日,對於被控訴違反《不正競爭防止法》的「愛知製鋼」前董事本蔵義信(下稱本蔵)等,宣判無罪。被告本蔵致力研發磁阻抗( Magnetic Impedance, MI)感測器,嗣後對於提高感測器性能及開拓市場等方向,與「愛知製鋼」意見分歧。故於2014年離職另成立マグネデザイン公司,翌年研究發現Giga Spin Rotation (GSR)原理,能製造更小且性能更高的感測器,並取得多項專利。 在2017年,原告「愛知製鋼」以被告本蔵等在2013年的會議中洩露營業秘密等為理由,提起告訴。經過兩次搜查,檢調發現相關會議筆記及白板照片等證據,故向法院提起公訴。法院指出在刑事程序,同樣適用民事上營業秘密法定構成要件,然而本案涉及的技術資訊,屬於工程上一般性、抽象性資訊,不符合秘密性要件。此外,法院認為原告「愛知製鋼」除未落實機密分級,在書面資料上標示「機密」外;且在保密期限屆滿後,亦未與生產商再簽署保密契約,難認為已採取合理保密措施,故不能認定被告本蔵等洩漏營業秘密。 雖然日本經濟產業省已明確指出刑事罰係針對違法性高的行為,且法院對於刑事訴訟的舉證程度,要求必須達到無合理懷疑。同時社會亦有輿論認為調查人員應慎重判斷,避免因不當提起訴訟,造成科學技術發展的負面影響。但在本案中,法院則強調營業秘密對於企業經濟活動的重要性極高,為避免因營業秘密侵害行為,致損害企業競爭力,故採取刑事保護的必要性,越發提高。綜上所述,若企業欲透過刑事罰,保護營業秘密,須採取更嚴謹的管理措施,始能確保藉由刑事訴訟程序,主張權利救濟。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
經濟合作與發展組織發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2023年2月23日發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》(Advancing accountability in AI: Governing and managing risks throughout the lifecycle for trustworthy AI)。本報告整合ISO 31000:2018風險管理框架(risk-management framework)、美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)人工智慧風險管理框架(Artificial Intelligence Risk Management Framework, AI RMF)與OECD負責任商業行為之盡職調查指南(OECD Due Diligence Guidance for Responsible Business Conduct)等文件,將AI風險管理分為「界定、評估、處理、治理」四個階段: 1.界定:範圍、背景、參與者和風險準則(Define: Scope, context, actors and criteria)。AI風險會因不同使用情境及環境而有差異,第一步應先界定AI系統生命週期中每個階段涉及之範圍、參與者與利害關係人,並就各角色適用適當的風險評估準則。 2.評估:識別並量測AI風險(Assess: Identify and measure AI risks)。透過識別與分析個人、整體及社會層面的問題,評估潛在風險與發生程度,並根據各項基本價值原則及評估標準進行風險量測。 3.處理:預防、減輕或停止AI風險(Treat: Prevent, mitigate, or cease AI risks)。風險處理考慮每個潛在風險的影響,並大致分為與流程相關(Process-related)及技術(Technical)之兩大處理策略。前者要求AI參與者建立系統設計開發之相關管理程序,後者則與系統技術規格相關,處理此類風險可能需重新訓練或重新評估AI模型。 4.治理:監控、紀錄、溝通、諮詢與融入(Govern: Monitor, document, communicate, consult and embed)。透過在組織中導入培養風險管理的文化,並持續監控、審查管理流程、溝通與諮詢,以及保存相關紀錄,以進行治理。治理之重要性在於能為AI風險管理流程進行外在監督,並能夠更廣泛地在不同類型的組織中建立相應機制。
德國針對企業聯網資訊安全及資料保護相關法律提出建議文件德國經濟及能源部於2018年3月8日為企業聯網資訊安全保護措施建議及資料保護、資料所有權相關法規提出建議文件,協助中小企業提升對於組織及特別領域中的資安風險之意識,並進一步採取有效防護檢測,包括基本安全防護措施、組織資安維護、及法規,並同時宣導德國資料保護法中對於資安保護的法定要求。 資通訊安全及其法規係為企業進行數位化時,涉及確保法的安定性(Rechtssicherheit)之議題。例如:應如何保護處理後的資料?如何執行刪除個人資料權利?各方如何保護營業秘密?如果資料遺失,誰應承擔責任?唯有釐清上述相關等問題時,方能建立必要的信任。而在德國聯邦資料保護法,歐盟一般個人資料保護法、歐盟網路與資訊安全指令等規範及相關法律原則,係為數位創新企業執行資安基礎工作重要法律框架。但是,由於數位化的發展,新的法律問題不斷出現,目前的法律框架尚未全面解決。 例如,機器是否可以處理第三方資料並刪除或保存?或是誰可擁有機器協作所產生的資料?因此,未來勢必應針對相關問題進行討論及規範。鑑於日益網路化和自動運作的生產設備,工業4.0的IT法律問題變得複雜。一方面,需要解決中、大型企業的營業祕密,資料所有權和責任主題之實際問題,以促進相關數位化創新。另一方面,為了能夠推導出現實的法律規範,需要更多具體實施案例討論,例如,企業家對產品責任問題,人工智慧使用,外包IT解決方案,及雲端計算等核心等問題,政府應協助為所有公司在安全框架下展開數位計畫合作的機會,並充分利用網路的潛力,而中小企業4.0能力中心也將為中小型公司在數位化目標上提供IT法問題方面的支持。