美國Amazon於1月10日正式發表在美國國內開始提供消費者使用其所購入CD之MP3資料的免費雲端服務「AutoRip」。 消費者一旦在Amazon.com的網站上購買音樂CD以後,音樂CD的MP3資料就會自動加入雲端音樂服務Amazon Cloud Player上的使用者個人儲存空間。購買手續完成以後,資料立刻自動加入,無需等待CD本身的送達。在這項服務範圍內的CD約有5萬片,不僅是在服務開始後購買的才能享受,服務還回溯至1998年以來曾在Amazon.com上購買過CD的消費者。 Amazon Cloud Player在公司的Kindle Fire,以及iPhone與iPad等搭載iOS作業系統的終端設備,與各家智慧型手機等搭載Android作業系統的終端設備等等都可利用,旨在提供消費者無論何時無論何地皆可以享受音樂的行動價值。此外,音樂資料不僅可以透過串流播放的方式利用,也能直接免費下載存檔利用。 目前,這項服務的對象區域僅限於美國境內,在日本、台灣都還無法利用,不過在網路上也已經有許多網友開始殷切期盼這項服務後續的推出。值得一提的是,Amazon這項服務的推出也進一步突顯了企業因應網路著作權利用型態發展的一個重要轉變。
澳洲競爭及消費者委員會(ACCC)就大型數位平臺對於消費者權益和市場競爭的問題提出建言澳洲競爭及消費者委員會(Australian Competition and Consumer Commission, ACCC)於2022年11月發佈了數位平臺第五份調查報告。該報告係ACCC受澳洲政府委託,於2020年起對數位平臺相關的消費者權益和市場競爭問題的調查,本次報告將重點放在監管如何改革。主要提供的建議和警示可分為五個方向: 1.反競爭行為 大型數位平臺擁有巨大的市場力量和重要的財政資源,佔據主導地位的數位平臺公司有能力和動機透過排他性行為和收購潛在競爭對手,以維持其在市場中的優勢地位。 2.消費者和中小企業保護不足 ACCC於2022年所發佈的最新報告與其自2017年開始進行數位平臺研究起所發布的其他報告一致,皆指出數位平臺的服務有以下潛在危害: ● 利用消費者偏見或引導消費者的方式向消費者提供服務。 ● 數位平臺上的詐騙明顯且持續增加。 ● 來自應用程式商店提供的不當和欺詐性應用程式的危害。 ● 創建、購買和銷售虛假評論以及以其他方式操縱評論的做法。 ● 欠缺救濟和爭議解決的途徑。 3.保護消費者的新措施 澳洲現有的競爭和消費者法律已難以因應數位平臺市場所面臨的消費者權益侵害和競爭危害等問題。該報告建議進行立法改革,具體如下: ● 商業市場中的消費者保護措施,包括禁止不公平交易行為和不公平契約條款。 ● 針對數位平臺的消費者爭議措施,包括強制規定內部和外部的爭議解決流程,以及平臺對詐騙、有害程式和虛假評論的預防和刪除義務。 ● 建立新的競爭框架,使受指定的數位平臺提供服務時受到適用於此一領域的強制性法規拘束。 ● 受指定數位平臺將應遵循之新框架和守則,以遵守競爭義務,避免其在市場中的反競爭行為,如競爭行為中的自我偏好(self-preference)等。 4.管轄 該調查報告亦指出適當且明確的管轄權限劃分對於新的監管框架來說非常重要,應在考慮到其專業知識和權責範圍的前提下,將監管責任分配給正確的管理機構,並且這些監管在流程中的各個環節都應受到適當的監督。 對於新的競爭框架及監管措施,ACCC建議可以參考英國當前的制度設計;英國政府成立了數位市場部門(Digital Markets Unit, DMU),該部門隸屬於競爭與市場管理局(Competition and Markets Authority),DMU負責監督受指定數位平臺,並在符合公平貿易、選擇開放、透明及信任等前提之下,DMU得視各個公司不同的情況對其進行特定的要求,如建立面對非法內容、對成人或未成年人有害內容時的應對措施等。 5.與國際方針的一致性 過去,澳洲在數位平臺監管策略採取了領先國際的創新行動,透過實施《新聞媒體議價法》(News Media Bargaining Code),要求數位平臺為新聞內容付費。但未來澳洲政府最終採用的策略將可能仿效他國經驗或是依循國際間共通模式,如英國推行中的《網路安全法》(Online Safety Bill)或歐盟的《數位市場法》(Digital Market Act)和《數位服務法》(Digital Services Act),而非獨樹一幟。 澳洲數位平臺監管策略之後續變化與進展值得持續追蹤,以做為我國數位平臺治理政策之借鏡。
促進頻譜使用效率--美國啟動獎勵拍賣機制為了滿足行動寬頻時代對於無線頻譜的需求,美國規劃了多種不同的頻譜釋出、分享或共用的政策,以增加可用的頻寬或提高使用效率,其中針對既有的數位無線電視服務所使用的頻譜,則提出「獎勵拍賣機制(incentive auctions)」。此機制最初於2010年由FCC提出,其特色在於具備自願性及市場導向兩項內涵。本次美國啟動獎勵拍賣機制,主要目的為藉由新業務之頻譜拍賣,將所得之部分標金作為誘因,以鼓勵廣播電視業者繳回原有頻譜使用權,並促進美國寬頻計畫(National Broadband Plan)之發展。目前針對此機制,美國國會已於2012年2月22日正式授權FCC執行。而FCC則於2012年10月2日發布FCC 12-118法規制定建議通知(Notice of proposed rulemaking, NPRM),並依據美國「2012年中產階級稅收減免及創造就業法案」(Middle Class Tax Relief and Job Creation Act of 2012)之授權,針對廣播電視頻譜獎勵拍賣機制進行商擬,並廣徵各界建議。 本次廣播電視頻譜獎勵拍賣機制主要可區分為三個步驟,(一)反向拍賣(reverse auction),指廣播電視業者藉由投標之方式,標得原持有頻段之自動放棄權。(二)頻譜重組(reorganization or repacking),此步驟是為了讓廣播電視頻譜藉由重組後,可釋出部分的超高頻(UHF)頻段以作為其他業務使用。(三)正向拍賣(forward auction),即針對頻譜進行重新授權,對此FCC提出將以更為彈性的概念使用頻譜。 目前整體拍賣機制尚處發展階段,各步驟內部運作應如何規劃,FCC仍積極尋求外界建議。不過從FCC所提出的五項關鍵政策目標(key policy goals)中,亦可歸納出未來整體機制的規劃方針包含(一)提升頻譜效能,期望未來得以5MHz為拍賣單位,並且支持各類無線行動技術如W-CDMA、HSPA以及LTE技術之發展、(二)確保不干擾鄰近國家頻譜之使用、(三)發展各頻段之通用性(interchangeable),促進各頻譜區段在重新配置後具備可替換性、(四)刺激頻譜回收達理想數量,以及(五)促進頻譜技術中立概念。面對美國在提升頻譜使用效率策略上又一記新嘗試,即便目前仍有許多不確定因素亟待突破,但就促進頻譜使用效率而言,亦不失為頻譜交易機制之外,另一可參考之方向。
世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。