智慧局:台灣將立法保護藥品資料專屬權

  美國貿易代表署近日公布特別 301不定期檢討報告,將台灣降級改列一般觀察名單。經濟部智慧財產局表示,對於美方仍有疑慮的藥品資料專屬權問題,衛生署已提出相關立法草案,台灣也將持續與美國合作,加強查緝網路侵權。


  台灣連續3年名列美國特別301優先觀察名單,這幾年政府修法、加強取締盜版等努力,終於獲得美方肯定,將台灣降級改列一般觀察名單。 智慧局表示,美國對台灣取締侵權行為的執行面表示肯定,期待台灣繼續健全智慧財產權保護的相關法令,台美雙方也將持續合作加強查緝網路侵權行為。這次台灣未能直接從特別 301名單除名,與藥品資料專屬權保護有關。 智慧局表示,台美雙方對於世界貿易組織(WTO) 與貿易有關智慧財產權協定(TRIPS)的解讀略有不同 ,美方認為新藥上市前送審的檢驗資料應列入智慧財產權保護範圍,但 TRIPS並未明定保護年限。行政院衛生署去年已同意立法予以保護,但草案尚未完成立法,美方也多次表達關切。 智慧局表示,台灣保護智慧財產權的努力,不會因為美國特別 301名單公布與否而稍有鬆懈,相關工作都 會持續進行。智慧局相信只要相關立法進度順利,加上政府與全民持續努力保護智慧財產權,台灣應可在美國4月份定期檢討時完全由特別301名單中除名。

本文為「經濟部產業技術司科技專案成果」

※ 智慧局:台灣將立法保護藥品資料專屬權, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=245&no=0&tp=1 (最後瀏覽日:2025/11/27)
引註此篇文章
你可能還會想看
網路線上廣播電視正方興未艾

美國白宮公布巨量資料追蹤報告與政策建議

合成資料(synthetic data)

  「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。   在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。   英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。   技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。

論數位經濟下研究報告開放近用及著作權例外國際新發展

TOP