<開原碼條例>建置醫療資源共享架構

 

 

  UCLA醫學中心以開放原始碼軟體Zope建置資訊系統,展開一項稱為「治療成效開放式架構」(OIO, Open Infrastructure for Outcomes) 的計畫,構築起未來醫療資訊系統的新基石。讓治療成效的資訊,能在一個共通的平台架構上進行資源分享。


  長期以來,醫療資訊系統面臨的挑戰主要來自於下列三個面向:一、如何讓資訊系統提供令人滿意的服務功能,以取代將醫療記錄登載在紙張上的傳統方式。二、資訊系統的需求經常會改變,如何快速因應系統的改變需求。三、如何與其他醫療團隊夥伴,共同分享資料與工具。


  OIO計劃透過資訊共享可加速醫療研究。開放式架構計畫的主要目的,並不是用來要求臨床工作者與醫療研究中心分享病歷資料,而是提供一個分享管理工具的機制,讓使用者能夠利用這些管理工具,進行資料的收集與分析,並和特定的診療研究人員進行溝通,而透過系統安全的機制,在過程當中並不會讓其他人得知資料內容。不過,如果有人想要進行管理工具或資料的進一步加值利用,僅需額外投入相當小的成本。


  另外, 開放式架構計畫的設計極具彈性,除了目前所專注的治療成效資訊統計之外,其系統概念也可以用來管理客戶資訊、進銷存資訊、會計資訊等。整個系統開發環境是針對使用者而設計,而非程式人員,並且以網頁應用程式來實作,力求操作的便利性,目的之一是讓使用者能夠動手創造出自己所需的表格資料。另一方面,設計上也面對來自於法律與技術層面的挑戰,例如取得病患的同意及對系統的信任感,促使這套系統在實作時,必須能夠提供高度的修改彈性與安全性。


  由於 OIO 在設計上,包含低成本、高效益、使用者導向、架構具有彈性等特色,並以開放源碼開發模式來鼓勵使用者測試及提供回饋意見,目前的應用效果持續擴大中。

 

本文為「經濟部產業技術司科技專案成果」

※ <開原碼條例>建置醫療資源共享架構, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=248&no=67&tp=1 (最後瀏覽日:2025/12/31)
引註此篇文章
你可能還會想看
英國倫理機構針對海量資料(big data)之使用展開公眾諮詢調查

  納菲爾德生物倫理學理事會(Nuffield Council on Bioethics)成立於1991年,是一家英國的獨立慈善機構,致力於考察在生物與醫學領域新近研究發展中所可能牽涉的各項倫理議題。由該理事會所發表的報告極具影響力,往往成為官方在政策決策時之依據。   有鑑於近年big data與個人生物和健康資料的分析使用,在生物醫學研究中引起廣泛的爭議討論,此間雖然不乏學者論理著述,但對社會層面的實質影響卻較少實證調查研究。Nuffield Council on Bioethics於日前發布一項為期三個月(2013/10/17~2014/01/10)的生物暨健康資料之連結使用公眾諮詢調查計畫(The linking and use of biological and health data – Open consultation)。此項計畫之目的在於,瞭解更多有關資料連結與使用時所可能導致之傷害或可能的有利發展。並研析適當的治理模式和法律措施,使得民眾隱私權保護與相關研究之合法性得以兼顧,俾使更多人受益。   為執行此項計畫,Nuffield Council on Bioethics延攬健康照護資訊技術、資訊治理、健康研究、臨床診療、倫理和法律等領域專家組成計畫工作小組,由工作小組廣泛地蒐集來自民眾與各類型組織的觀點,探詢當民眾在面對個人的生物與健康資訊相互連結、分析時,民眾對當中所牽涉倫理議題之看法。該項公眾諮詢調查將針對以下重點進行: 1.生物醫學資料之特殊意義 2.新的隱私權議題 3.資料科學和資訊技術發展所造成之影響 4.在研究中使用已連結的生物醫學資料所可能帶來的影響 5.在醫學臨床上使用已連結的資料所可能帶來的影響 6.使用生物醫學研究和健康照護以外的生物醫學資料所可能帶來的影響 7.探討能夠在倫理上支持連結生物醫學資料的法律和治理機制   由於Nuffield Council on Bioethics被視為英國科學界的倫理監察員、政府智囊團,因此未來調查報告發布後對相關政府政策所可能產生的影響,當值得我們持續關注。

經濟合作與發展組織發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》

經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2023年2月23日發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》(Advancing accountability in AI: Governing and managing risks throughout the lifecycle for trustworthy AI)。本報告整合ISO 31000:2018風險管理框架(risk-management framework)、美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)人工智慧風險管理框架(Artificial Intelligence Risk Management Framework, AI RMF)與OECD負責任商業行為之盡職調查指南(OECD Due Diligence Guidance for Responsible Business Conduct)等文件,將AI風險管理分為「界定、評估、處理、治理」四個階段: 1.界定:範圍、背景、參與者和風險準則(Define: Scope, context, actors and criteria)。AI風險會因不同使用情境及環境而有差異,第一步應先界定AI系統生命週期中每個階段涉及之範圍、參與者與利害關係人,並就各角色適用適當的風險評估準則。 2.評估:識別並量測AI風險(Assess: Identify and measure AI risks)。透過識別與分析個人、整體及社會層面的問題,評估潛在風險與發生程度,並根據各項基本價值原則及評估標準進行風險量測。 3.處理:預防、減輕或停止AI風險(Treat: Prevent, mitigate, or cease AI risks)。風險處理考慮每個潛在風險的影響,並大致分為與流程相關(Process-related)及技術(Technical)之兩大處理策略。前者要求AI參與者建立系統設計開發之相關管理程序,後者則與系統技術規格相關,處理此類風險可能需重新訓練或重新評估AI模型。 4.治理:監控、紀錄、溝通、諮詢與融入(Govern: Monitor, document, communicate, consult and embed)。透過在組織中導入培養風險管理的文化,並持續監控、審查管理流程、溝通與諮詢,以及保存相關紀錄,以進行治理。治理之重要性在於能為AI風險管理流程進行外在監督,並能夠更廣泛地在不同類型的組織中建立相應機制。

日本網路購物標價錯誤判決與臺、日實務差異之研究

英國與美國為人工智慧安全共同開發簽署合作備忘錄

英國技術大臣(U.K. Secretary of State for Science)蜜雪兒·多尼蘭(Michelle Donelan)和美國商務部長(U.S. Secretary of Commerce)吉娜·雷蒙多(Gina Raimondo)於2024年4月1日在華盛頓特區簽署一份合作備忘錄(MOU),雙方將共同開發先進人工智慧(frontier AI)模型及測試,成為首批就測試和評估人工智慧模型風險等進行正式合作之國家。 此備忘錄之簽署,是為履行2023年11月在英國的布萊切利公園(Bletchley Park)所舉行的首屆人工智慧安全峰會(AI Safety Summit)上之承諾,諸如先進AI的急速進步及濫用風險、開發者應負責任地測試和評估應採取之適當措施、重視國際合作和資訊共享之必要性等等,以此為基礎羅列出兩國政府將如何在人工智慧安全方面匯集技術知識、資訊和人才,並開展以下幾項聯合活動: 1.制定模型評估的共用框架(model evaluations),包括基礎方法(underpinning methodologies)、基礎設施(infrastructures)和流程(processes)。 2.對可公開近用模型執行至少一次聯合測試演習(joint testing exercise)。 3.在人工智慧安全技術研究方面進行合作,以推進先進人工智慧模型之國際科學知識,並促進人工智慧安全和技術政策的一致性。 4.讓英、美兩國安全研究所(AI Safety Institute)間的人員互相交流利用其團體知識。 5.在其活動範圍內,依據國家法律、法規和契約規定來相互共享資訊。 換言之,兩國的機構將共同制定人工智慧安全測試之國際標準,以及適用於先進人工智慧模型設計、開發、部署、使用之其他標準。確立一套通用人工智慧安全測試方法,並向其他合作夥伴分享該能力,以確保能夠有效應對這些風險。就如英國技術大臣蜜雪兒·多尼蘭強調的,確保人工智慧的安全發展是全球性問題,只有通過共同努力,我們才能面對技術所帶來的風險,並利用這項技術幫助人類過上更好的生活。

TOP