五年投資一百五十億 生醫科技島計劃啟動

 

 

  經過一年以上的準備,行政院科技顧問組六日宣布啟動「生醫科技島計畫」計劃。自今年起以五年投入一百五十億元預算,建立「國民健康資訊基礎建設整合建置計畫( NHII )」、「台灣人疾病及基因資料庫( Taiwan Biobank )」、及「臨床試驗研究體系」三大重點。未來除了減少健保成本一百億元以上,也希望協助業界創造數百億元市場商機。


  生醫科技島計畫為國內所帶來的效益方面, NHII 將可減少醫療支出三%,共一百億元規模,至於促進民間投資及產業升級方面,預期五年內可帶動民間及政府投資四百億元以上;至於 Taiwan Biobank 方面,除了領先新加坡及中國大陸建立華人特定族群基因資料庫的供給中心,更可帶動國內的新藥開發、基因治療、藥物副作監測,及疾病篩檢及防治等醫藥發展。


  行政院科技顧問組指出,其中 Taiwan Biobank 計劃因為涉及「科技對倫理、法律及社會( ELSI )」等議題有較多社會疑慮,將根據現有的醫事法及立法院正進行三讀的個人資料保護法立法精神,預計今年先進行五千人基因資料蒐集,待兩年後正式的基因資料保護相關法律定出新法後,將會加速完成二十萬人的資料蒐集。

 

本文為「經濟部產業技術司科技專案成果」

※ 五年投資一百五十億 生醫科技島計劃啟動, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=253&no=67&tp=1 (最後瀏覽日:2026/01/21)
引註此篇文章
你可能還會想看
澳洲聯邦法院判決藥品仿單受著作權保護

  澳洲聯邦法院近日在Sanofi-Aventis Australia Pty Ltd與Apotex Pty Ltd一案中([2011] FCA 846),首次針對記載藥品資訊的仿單著作權侵權問題進行處理。法院判決Sanofi的Leflunomide藥品仿單含有Sanofi員工相當的知識與判斷,係Sanofi員工的共同著作,受到著作權的保護。法院並進一步判決Apotex的Leflunomide藥品仿單重製了Sanofi 的Leflunomide藥品仿單的重要部分,在係爭案件中,亦無法推斷出有默示的授權,因此判決Apotex侵犯了Sanofi的Leflunomide藥品仿單的著作權。   儘管藥品仿單的複雜問題目前仍備受爭議與討論,澳洲將在醫療物品修正法案(Therapeutic Goods Legislation Amendment (Copyright) Act 2011)中,針對相關問題加以釐清。前述修正案針對1968年著作權法(Copyright Act 1968)新增44BA條,該條項賦予在1989年醫療產品法(Therapeutic Goods Act 1989)25AA條款下有關醫藥產品資訊的合理使用範疇,明確規範包括供給、重製、發行、散佈/傳播(communicating)、改作等利用全部或部分醫療藥品資訊的行為不侵害產品資訊的著作權。

Horizon Europe

  Horizon Europe為歐盟2021-2027年之科技研發架構計畫。科技研發架構計畫(Framework Programmes for Research and Technological Development,依不同期別縮寫為FP1-FP8)為全球最大型的多年期科研架構計畫,今期之Horizon 2020已進入尾聲,2021年起所實施的歐盟科研架構計畫──FP9正式命名為「Horizon Europe」。   為打造歐盟成為創新市場先鋒,延續Horizon 2020計畫成效,Horizon Europe重視投資研發與發展創新,包含強化歐盟的科學與技術基礎、促進歐洲創新能力,以及永續歐洲社會經濟的模式與價值。   Horizon Europe發展方向分為三大主軸,分別為: 卓越科學(Excellent Science):透過歐洲研究理事會(European Research Council, ERC)、新居禮夫人人才培育計畫(Marie Skłodowska-Curie Actions, MSCA)和研究基礎設施(Research Infrastructures)加強歐盟科學領導力。 全球挑戰與產業競爭力(Global Challenges and European Industrial Competitiveness):此主軸再分別發展6個子題,以應對歐盟和全球政策並加速產業轉型。該6個子題分別為(1)健康;(2)文化與創造力;(3)社會安全;(4)數位與太空產業;(5)氣候、能源與交通;(6)糧食、生物經濟(Bioeconomy)、自然資源、農業與永續環境。 創新歐洲(Innovative Europe):促進、培育和部署市場創新,維護友善創新環境之歐洲生態系統(European ecosystems)。   此外,Horizon Europe擬把實驗階段中具備高潛力和前瞻性的技術帶入市場,轉以任務導向協助新創產業設立,推動跨事業多方整合。

美國加州地方法院日前判決宣告追及權立法違反聯邦憲法

  「追及權」起源於1921年的法國,又名An artist resale royalty、Droit de suite,在美國則稱為Resale royalty right,是指藝術創作品轉手後,原來的藝術家仍享有一定比例抽成的權利。立法之初在於保護弱勢的藝術創造家,以梵谷的畫作《農婦》為例,原始賣價僅為1000日圓,惟卻在拍賣會場上以6千6百萬日圓創下當時的天價。然而,獲利的僅是收藏家與投資客,梵谷與其後代沒有享受到絲毫利益。再者,藝術創造家不似出版業者或音樂製作者可藉由「授權」或「締約」的方式保護其經濟利益,一件藝術品不僅製作時間長、成本高、且為世界獨一無二,有必要藉由追及權或相類似制度完善權利體系的保障。   歐盟在2001年要求會員國制定追及權相關法律,截至今日,包括歐洲、拉丁美洲、韓國、日本、澳洲、甚至北韓等全球超過165個國家,都採納追及權制度。然而美國則僅有加州針對追及權有立法的規定。雖於1991年美國國會要求著作權局針對此制度之可行性進行調查報告,但結論顯示並無足夠的經濟、政策理由予以支持;此外是否要保護或補償投資者或收藏家的貢獻亦無共識,故未開展立法程序。   相關討論於2012年3月17日再度引起關注。美國加州地方法院宣告Civil Code Section 986(即追及權部分)違憲,其所持理由為此一法條造成其他州的負擔以及違反美國聯邦憲法之商業條款(Commerce Clause),惟此案仍在第九巡迴法院上訴程序中,尚未定讞。相同見解以為,此一制度將會降低藝術品的起始價格且阻礙流通,進而造成整體市場的傷害;況且與傳統自由交易模式有所扞格,又不能強制加諸追及權更是否定的重要理由。   未來我國是否引進追及權制度,加強對藝術創造者的保護,實有待各界深入研究與討論。

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)

TOP