由於新興通訊技術的應用與網路頻寬的快速成長,透過網路收看電視已不再是遙不可及的科技願景。網路電視(Internet Protocol Television;IPTV)在許多國家都已經是逐漸應用成熟的服務,但是相對而言,法規的管制架構卻多仍處於追趕摸索的階段。
網路電視之相關法制爭議眾多,曾被提出討論者如攸關管制基準之網路電視定位,是否視同傳統廣播電視加以管制?相關之義務是否比照要求(如對於無線電視之必載義務)?網路電視市場之界定?市場力量之監督與公平競爭環境之維護等,皆為重要的關注焦點。
韓國國會傳播特別委員會於上月(11月)通過一項網路電視法案(IPTV Bill),對於重要之網路電視相關規範加以界定。此一國會傳播特別委員會所通過之網路電視服務法草案,對未來網路電視可能的市場主導者(包含廣播電視公司、網際網路服務提供者、電信公司等)之行為,事先加以規範。例如規定KT等重要電信公司提供網路電視服務並不需要另行成立附屬公司;另一方面,廣播電視公司未來將可提供全國性的網路電視服務,惟其市場佔有率將限於整體市場的三分之一以下。
未來的網路電視型態可能包含被動收視或主動要求播送,其他附加的服務更包含透過網路電視進行購物、遊戲、金融服務等,潛藏之商機已引起各界注意,也值得國內盡早思考整體管制架構,促進產業成熟發展。
本文為「經濟部產業技術司科技專案成果」
韓國法務部於2009年9月21日宣布將於2009年10月向韓國國會提交入出境管理法修正案,要求任何超過17歲之外國人於入境韓國時,必須提供食指指紋及個人臉部照片;如不提供,則不許其入境。而如該外國人欲滯留韓國境內超過3個月時,則必須登錄其所有手指的指紋。通過該方式所取得之指紋及照片,將依韓國個人資料保護法統一存放於「外國人生理資訊資料庫」(database of physical information on foreigners)。 據韓國法務部官員表示,之所以提出此法律修正案,是因為近來韓國已面臨嚴重的非法入境、移民犯罪、外國人犯罪以及恐怖主義之威脅,因此重新實施指紋及生理資訊登錄制度顯然刻不容緩。 不過,值得注意的是:原先韓國入出境管理法要求滯留韓國境內超過1年之外國人需提供所有指紋的規定,已於2004因被認為有侵害個人隱私之嫌疑而遭韓國國會廢止。然而此次不僅捲土重來,而且還擴大到短期滯留旅客亦須提供指紋及照片。相關立法措施是否真能順利通過,似乎仍有待進一步觀察。
日本數位廳發布資料治理指引,協助企業運用資料提升企業價值日本數位廳發布資料治理指引,協助企業運用資料提升企業價值 資訊工業策進會科技法律研究所 2025年09月05日 隨著AI迅速普及已成為不可逆轉的趨勢,經濟與社會產生重大變革,手機、家電及各種智慧裝置大量蒐集資料,似已成為維持經濟與社會運作不可或缺的重要要素,在國際上已出現如歐洲共同資料空間(Common European Data Space)等先進的資料運用案例,日本亦開始推動企業跨領域資料運用,藉此提升企業生產力與附加價值[1]。 壹、事件摘要 日本數位廳(デジタル庁)於2025年6月20日發布資料治理指引(データガバナンス・ガイドライン),以企業經營者為適用對象,歸納總結資料治理之必要性、應採取之做法,與實踐治理過程中應留意之要點,協助企業推動數位轉型,發揮資料最大效用,持續提升企業價值,並進一步實現超智慧社會[2](Society 5.0)願景[3]。 貳、指引重點 本指引歸納總結實踐資料治理的四大支柱,概述如下: 一、設計符合跨境傳輸資料實際狀況之業務流程 資料共享與協作的主要目的是推動數位轉型與提升企業價值,因此,運用跨境資料時,需要調查當地國家或地區法規,釐清國際規範,並預測後續法規動向,克服法規限制。為評估運用跨境資料之潛在風險,則須透過如顧問公司、諮詢公司等第三方外部機構進行調查與監控,採取適當風險因應措施。為明確責任,須事先與資料共享之利害關係人,將瑕疵擔保責任透過契約與相關規定明文化。在修改業務流程時,亦須與相關組織及利害關係人共享資訊,確保資料在生命週期中的可追溯性[4]。 二、確保資料安全(データセキュリティ) 以資料生命週期為基礎,掌握運用跨境資料可能產生之風險,並依照相關組織與利害關係人值得信賴之程度,進行風險分析制定因應策略。針對業務流程中取得的資料,應限制在資料產生者允許之範圍內,始得進行運用,以維護資料使用正當性。此外,亦須特別留意資料完整性,確保資料來源值得信賴且未受到偽冒,以及資料內容未遭到竄改或洩漏[5]。 三、提升資料成熟度(データマチュリティ) 制定並推動可提升資料成熟度[6]之方針,持續改善流程,將資料價值最大化,並將風險最小化,提升企業綜合能力。資料長(Chief Data Officer, CDO)須發揮領導能力,建立能迅速因應變化的體制,明確各組織相關負責人與其角色,並推動具備資料相關技能之人才培育招聘計畫。資料長亦須分析導入如AI等先進技術之費用效益,向經營者提出建議。除了公司自身狀況會影響資料成熟度外,亦可能受到資料共享與協作之利害關係人的資料成熟度水準影響。因此,公司亦須將採取之具體措施與相關資訊分享予利害關係人,並向社會公開公司目前資料成熟度水準,持續強化企業與利害關係人及社會之間的相互信賴程度[7]。 四、制定並定期檢討AI等先進技術運用行動方針 為使AI等先進技術發揮最大力量,並降低對社會與個人可能造成的負面影響,企業應參考經濟產業省(経済産業省)於2025年3月28日發布之AI業者指引第1.1版[8](AI事業者ガイドライン第1.1版),並考量個人資料保護、機敏資料保護、透明度、可問責等重要因素,針對涉及資料運用的各種實務運用場景,由CDO主導制定運用AI等先進技術運用行動方針(AIなどの先端技術の利活用に関する行動指針),並適時檢討持續改善內容[9]。 參、事件評析 當資料留存在企業內部未被有效運用時,不僅會成為企業和產業發展之阻礙,也將導致社會整體效率低落。本指引歸納總結實踐資料治理的四大支柱。為達成協助企業運用資料推動數位轉型,提升企業價值之目標,除了需要企業管理階層主導,亦須獲得公司內部與利害關係人之理解與支持。企業應積極與其他企業、組織和機構進行資料共享與協作,積極參與資料治理,提高產品與服務價值及企業聲譽,進而促進社會永續性發展[10]。 隨著國際上已出現先進資料運用案例,我國亦須關注資料運用國際趨勢推動創新發展,日本推動企業跨領域運用資料之做法,亦可為我國未來實踐資料治理提供借鏡。 [1]〈データガバナンス・ガイドライン〉,デジタル庁,頁2-3,https://www.digital.go.jp/assets/contents/node/information/field_ref_resources/71bf19c2-f804-488e-ab32-e7a044dcac58/b1757d6f/20250620_news_data-governance-guideline_01.pdf (最後瀏覽日:2025/09/02)。 [2]〈Society 5.0〉,内閣府,https://www8.cao.go.jp/cstp/society5_0/index.html (最後瀏覽日:2025/09/02)。 [3]前揭註1。 [4]同前註,頁13。 [5]同前註,頁15-16。 [6]資料成熟度係指企業根據其戰略或經營需求,有效運用資料的能力。可參閱同前註,頁5。 [7]同前註,頁18-19。 [8]〈AI事業者ガイドライン〉,経済産業省,https://www.meti.go.jp/shingikai/mono_info_service/ai_shakai_jisso/20240419_report.html (最後瀏覽日:2025/09/02)。 [9]前揭註1,頁20-23。 [10]同前註,頁24-25。
中國大陸專利局於2014年7月21日簽署「知識產權保險戰略合作協議」,落實創新驅動發展戰略中國大陸專利局與中國人民財產保險股份有限公司於2014年7月21日在北京簽署「知識產權保險戰略合作協議」,雙方將合作促進專利保險之發展。所謂專利保險係指在專利研發、專利申請、實施、讓與、使用或專利訴訟中,由於發生專利侵權的行為而提供的保險服務。然而,此次協議更包括專利保險政策擬定與政策環境營造、承保理賠流程之改善,並且試圖強化專利風險的宣導以提升企業管理專利風險的意識,最終目標是建立專利保險風險控制及分散機制。 相對於我國高科技產業於引進專利保險在分散專利風險上有正面的參考價值,但由於現行客觀環境下的條件較不完備,使得我國在推行專利保險上窒礙難行,主要原因在於法律制度的不同所產生的專利風險程度有異、無法準確計算保險標的鑑價制度等,但專利保險的概念早在1994年美國即已推出,又伴隨智慧財產權意識的高漲,各國也相繼推行,例如:英國推出的「專利申請保險」,以及日本推出的「知識產權授權金保險」等。因此,此次中國大陸亦擴大推行專利保險之政策,可謂與國際發展趨勢與整體智財法制建制有關,可供我國未來引進專利保險制度上試行之參考與討論。
英國資訊委員辦公室提出人工智慧(AI)稽核框架人工智慧(Artificial Intelligence, AI)的應用,已逐漸滲透到日常生活各領域中。為提升AI運用之效益,減少AI對個人與社會帶來之負面衝擊,英國資訊委員辦公室(Information Commissioner’s Office, ICO)於2019年3月提出「AI稽核框架」(Auditing Framework for Artificial Intelligence),作為確保AI應用合乎規範要求的方法論,並藉機引導公務機關和企業組織,評估與管理AI應用對資料保護之風險,進而建構一個可信賴的AI應用環境。 AI稽核框架主要由二大面向所構成—「治理與可歸責性」(governance and accountability)以及「AI特定風險領域」(AI-specific risk areas)。「治理與可歸責性」面向,係就公務機關和企業組織,應採取措施以遵循資料保護規範要求的角度切入,提出八項稽核重點,包括:風險偏好(risk appetite)、設計階段納入資料保護及透過預設保護資料(data protection by design and by default)、領導管理與監督(leadership management and oversight)、政策與程序(policies and procedures)、管理與通報架構(management and reporting structures)、文書作業與稽核紀錄(documentation and audit trails)、遵循與確保能力(compliance and assurance capabilities)、教育訓練與意識(training and awareness)。 「AI特定風險領域」面向,則是ICO特別針對AI,盤點下列八項潛在的資料保護風險,作為風險管理之關注重點: 一、 資料側寫之公平性與透明性(fairness and transparency in profiling); 二、 準確性(accuracy):包含AI開發過程中資料使用之準確性,以及應用AI所衍生資料之準確性; 三、 完全自動化決策模型(fully automated decision making models):涉及人類介入AI決策之程度,歐盟一般資料保護規則(General Data Protection Regulation, GDPR)原則上禁止無人為介入的單純自動化決策; 四、 安全性與網路(security and cyber):包括AI測試、委外處理資料、資料重新識別等風險; 五、 權衡(trade-offs):不同規範原則之間的取捨,如隱私保護與資料準確性; 六、 資料最少化與目的限制(data minimization and purpose limitation); 七、 資料當事人之權利行使(exercise of rights); 八、 對廣泛公共利益和權利之衝擊(impact on broader public interests and rights)。 ICO將持續就前述AI特定風險領域,進行更深入的分析,並開放公眾討論,未來亦將提供相關技術和組織上之控制措施,供公務機關及企業組織進行稽核實務時之參考。