幹細胞研究 麻州亮綠燈

 

 

  美國麻薩諸賽州州長 Mitt Rom-ney 在五月二十七日否決一項允許在麻州擴大胚胎幹細胞試驗研究法案。州長支持使用成年人的幹細胞或從治療不孕症診所剩餘冷凍胚胎提取細胞的研究,但他呼籲州議員禁止複製,因為提取幹細胞會摧毀胚胎。他說,這相當於創造人類生命只是為了摧毀它,在道德上不具有合理性。此外,他還呼籲州議員在法案中增設一項條款,規定懷孕那一刻即為生命開始,禁止為了其他研究製造胚胎,並限制給捐獻卵子婦女的補償,但州議會拒絕他了的所有這些要求。該州參眾兩會在同月三十一日以壓倒性的票數,推翻州長先前在二十七日所為之否決,並使該法案立即生效。


  根據舊州法,若麻州科學家想進行胚胎幹細胞研究,必須獲得地區檢察官批准。新法實施後,科學家不需等待地區檢察官同意後才能進行研究,但州衛生廳將有權管制過程。除此之外,這項新法和聯邦法一樣,禁止複製嬰兒。


  美國各州對幹細胞研究的態度迥異,甚至可以說處於分裂狀態。有七個州禁止任何複製研究,十一個州禁止幹細胞研究。但是,加州在二○○四年率先透過法案支持胚胎幹細胞研究,還計劃在十年內從州預算中撥款三十億美元資助這項研究。麻州緊隨其後。紐約、康涅狄格、賓州等也準備放寬對幹細胞研究的限制。 支持胚胎幹細胞研究者紛紛希望,麻州能成為治療脊椎受傷和糖尿病、柏金森氏症等疾病的科學先進研究中心。

 

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 幹細胞研究 麻州亮綠燈, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=257&no=65&tp=1 (最後瀏覽日:2025/07/27)
引註此篇文章
你可能還會想看
內政部、經濟部發佈「新建建築物節約能源設計標準」,自七月一日施行

德國立法通過反駭客法

  德國政府為減少官方與民間的電腦受到網路駭客的攻擊,於2007年5月正式立法通過「反駭客法(Antihacker Law)」,並藉此擴大了現行德國法律中網路犯罪的懲處範圍,從僅處罰破壞或攻擊商業或政府機關之電腦系統,擴及至破壞或攻擊個人電腦或DOS系統之犯罪。   依德國「反駭客法」之規定,凡任何個人或團體意圖非法使用而故意製造、散播或購買駭客工具(hacker tools)者,將可能被處十年以上有期徒刑。而所謂的「駭客(hacking)」在新法中則被定義為,凡是侵入電腦系統並獲取資訊者,不論是否有竊取該資訊的行為,均屬之。   上述立法結果,反對人士擔心恐將適得其反,因駭客工具的存在具有一體兩面,研發並利用駭客工具來測試電腦以及網路系統的安全性,在德國已行之有年,如果一旦加以禁止,不但無法達到預期目的,也過於輕視網路駭客者的能力;又將來持有駭客工具者,未來必須在法庭上主張係出於善意持有,亦是增加了持有者的舉證責任。該法已經於2007年8月實施。

美國推動產業巨量資料(Big Data)新型應用分析--SunShot子計畫

  近年來,巨量資料(Big Data)狂潮來襲,各產業競相採用此種新型態模式,將充斥各領域之資料量,加以深度分析及集合、比對,篩選具價值性之各項資料。以美國為例,於2011年2月份正式啟動SunShot計畫,期透過聯邦政府的資源,加強推動不同領域之巨量資料分析,有利各領域之政府資源重整運用,以期使推動計畫更經濟效率且具競爭力。並且,美國政府更於2013年1月30日,宣布將挹資900萬元資助7項科專計畫,補助對象分別為: (1) SRI International; (2) 麻省理工學院(MIT); (3)北卡羅萊納大學 (Charlotte校區); (4) Sandia 國家實驗室;(5) 國家再生能源實驗室;(6) 耶魯大學;(7) 德州大學奧斯汀分校,加強各領域推動及整合。   此項「巨量資料」參與計畫之研究團隊將與公私營金融機構(financial institutions)、事業單位(utilities)及州層級之行政機關(agencies)展開合作(partnership),運用統計和電腦工具(statistical and computational tools),解決產業面之難題(challenges);同時,其將運用發展出之模型(Models),測試分散全美不同地區領航計畫(pilot projects)創新研發之影響和規模。計畫中,美國政府亦將以200萬元的預算,分析數十年來的科學報告、專利、成本、生產等資料,期能拼湊出相關產業之全貌,加速發掘科技突破之方法並有效降低成本。以德州(Texas)為例,奧斯汀分校(UT Austin)研究團隊乃與六個不同事業單位(utilities)進行合作,研析經營所蒐集之資料(datasets),以有效了解消費者的需求,提升太陽能未來安裝和聯結(installation and interconnection)之效率。   時值全球鼓勵產業轉型及資源整合,作為世界先進國家的美國,善用聯邦政府和高等學術研究機構之資源,進行整體產業之資料分析,殊值我國借鏡參考。

美國國家標準暨技術研究院規劃建立「人工智慧風險管理框架」,並徵詢公眾對於該框架之意見

  美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)為管理人工智慧對於個人、組織以及社會所帶來之風險,於2021年7月29日提出將建立「人工智慧風險管理框架」(Artificial Intelligence Risk Management Framework, AI RMF)之規畫並徵詢公眾意見,截止日為9月15日,並預計於10月發布正式報告。   依照NIST說明,公眾所建議之人工智慧風險管理框架,可促進人工智慧之可信賴性,其中包含如何應對並解決人工智慧於設計、發展及使用過程中所遭遇之「精確度」(accuracy)、「可解釋性」(explainability)、「偏見」(bias)等議題。此外,上開管理框架預計為非強制性、供企業自願性使用於人工智慧設計、發展、使用、衡量及評估之人工智慧標準。   依現有公眾意見徵詢結果,其中DeepMind公司建議於人工智慧設計初期,必須預先構思整體系統之假設是否符合真正社會因果關係。舉例言之,當設計一套可預測民眾健保需求程度之系統時,如輸入參數僅考量民眾於醫療上的花費,將使僅有可負擔較高醫療費用之民眾被歸類為健保需求程度較高者,從而導致健保制度排擠經濟負擔程度較差之公民,故在設計系統時,應從預先設定之假設事實反面(counter-factual)思考並驗證是否會產生誤差或公平性之問題(例如預先思考並驗證「醫療費用支出較低之民眾是否即可被正確歸類為健保需求度低之民眾」)。惟進行上述驗證需要大量社會資料,因此DeepMind也建議NIST應建立相關機制,使這些社會資料可以被蒐集、使用。   此外,亦有民眾建議管理框架應有明確之衡量方法以及數值指標,以供工程界遵循。同時鑒於人工智慧發展極為快速,未來可能有不同於以往之人工智慧類型出現,故亦建議NIST應思考如何在「建構一套完整且詳細之人工智慧治理框架」與「保持人工智慧治理框架之彈性與靈活性」之間取得平衡。   最後,目前也有許多徵詢意見指出,許多人工智慧治理之目標會相互衝突。舉例言之,當NIST要求人工智慧系統應符合可解釋性,則人工智慧公司勢必需要經常抽取人工智慧系統中之「數據軌跡」(audit logs),惟數據軌跡可能被認為是使用者之個人資料,因此如何平衡或完善不同治理框架下之目標,為未來應持續關注之議題。

TOP