京都議定書效應 核電乾淨能源鹹魚翻身

 

 

  京都議定書實施後,號稱最乾淨能源的核電,反而有利於環境;而台灣燃煤電廠密度列世界前茅,是否有必要再檢討「非核家園」政策,值得觀察。


   調查顯示,美國除了將要提前除役的核電廠延役外,芬蘭、韓國、日本都有建新核電廠的計畫,中國大陸更將以一年一座核電的速度,持續到 2020 年,美國奇異公司、法國、甚至韓國都有意分食這塊大餅,就連台灣反核的師法對象德國,都有改弦易轍的打算。


   另外,根據國際原子能委員會推估, 2020 年前全球將有超過 60 座的核電廠上線運作,將全球核電廠的數量推升到 500 座,這些核電廠大多分布在亞洲。


   目前台灣燃煤發電廠密度名列世界前茅,不論是二氧化碳及汞汙染都十分嚴重,面對京都議定書,燃煤電廠勢必不能再增加,不必將核能發電排除在未來選項中。面對京都議定書所造成的新論點,及國際能源不斷上漲的新趨勢,台灣在六月份全國能源會議中該訂定新的能源比例,不必特別排除核能發電,並發展再生能源,另外,在鼓勵汽電共生政策中,該特別鼓勵天然氣電廠,以減少燃煤電廠比例不斷上升。

 

本文為「經濟部產業技術司科技專案成果」

※ 京都議定書效應 核電乾淨能源鹹魚翻身, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=265&no=67&tp=1 (最後瀏覽日:2025/12/30)
引註此篇文章
你可能還會想看
運作技術成熟度(Technology Readiness Level)進行技術評估

運作技術成熟度(Technology Readiness Level)進行技術評估 資策會科技法律研究所 法律研究員 羅育如 104年10月22日 壹、前言   為提升我國科技競爭力,於1999年制定科學技術基本法(以下簡稱科技基本法),透過科技基本法的規定,使原本歸屬國有財產之研發成果,得以下放歸屬執行單位所有,使大學對研發成果能有更完善應用之權利。   科技基本法實施之後,各研究單位開始學習國外經驗,積極進行產學合作,將內部之研發成果技術移轉與外部產業。但是,科技基本法實行已15年的今日,各界逐漸發現,政府經費之投入與研發成果產出之經濟效益有相當大的差距。例如科技部102年專題研究計畫補助經費為215億新台幣,但僅創造3.5億新台幣之衍生成果技術移轉權利金[1]。政府經費投入與產出不符預期的議題,牽涉多元層面問題,但是從新設立政府計畫案之目標與KPI,可以發現政府新創設之補助計畫開始以協助技術商業化作為主要目的,例如萌芽計畫、產學計畫等。   技術商業化操作模式會依據技術成熟度不同而有所差異,技術成熟度高的項目,廠商承接後所需要投入的研發成果可能較低,直接協助廠商改善生產流程或是成為產品商品化的機率較高;反之,廠商則需要投入較多的技術研發費用,需要花費較多的人力與資源,技術才有機會商品化。   由此可知,在技術商業化計畫推廣時,技術項目的技術成熟度是一個重要的評估關鍵。本文針對技術成熟度的評估指標詳細說明,以提供執行技術商業化計畫時,評估技術項目之參考。以下會分別說明何謂技術成熟度以及技術成熟度如何運用,最後會有結論與建議。 貳、技術成熟度說明   技術成熟度或稱為技術準備度(Technology Readiness Level;簡稱TRL)是美國太空總署(NASA)使用多年的技術評估方法,後來為美國國防部所用,再廣為國際各政府機構、學研單位、企業機構使用。   TRL是一個系統化的量尺/衡量指標,可以讓不同型態的技術有一致性的衡量標準,描述技術從萌芽狀態到成功應用於某項產品的完整流程[2]。而TRL涵蓋的技術研發流程則包括四個部分:(1)概念發展:新技術或是新概念的基礎研究,涵蓋TRL1~3;(2)原型驗證:特定技術針對一項或是多項潛在應用的技術開發,涵蓋TRL4與5;(3)系統開發:在某一應用尚未成為一整套系統之前的技術開發以及技術驗證,然後進行系統開發,涵蓋TRL6;(4)系統上市並運作[3],涵蓋TRL7~9。以下分別說明TRL每個衡量尺度的定義[4]。 TRL 1 基礎科學研究成果轉譯為應用研究。 TRL 2 為某項特殊技術、某項材料的特性等,找出潛在創新應用;此階段仍然是猜測或推論,並無實驗證據支持。 TRL 3 在適當的應用情境或載具下,實驗分析以驗證該技術或材料相關物理、化學、生物等特性,並證明潛在創新應用的可行性(proof-of-concept)。 TRL 4 接續可行性研究之後,該技術元素應整合成具體元件,並以合適的驗證程序證明能達成原先設定的創新應用目標。 TRL 5 關鍵技術元件與其他支援元件整合為完整的系統/系系統/模組,在模擬或接近真實的場域驗證。需大幅提高技術元件驗證的可信度。 TRL 6 代表性的模型/雛形系統在真實的場域測試。展示可信度的主要階段。 TRL 7 實際系統的雛形品在真實的場域測試。驅使執行TRL7的目的已超越了技術研發,而是為了確認系統工程及研發管理的自信。 TRL 8 實際系統在真實的場域測試,結果符合設定之要求。代表所有技術皆已整合在此實際系統。 TRL 9 實際系統在真實場域達成目標。 參、技術成熟度應用   技術成熟度可以單純拿來衡量技術開發階段、可用來衡量技術開發風險、也可作為研發機構角色以及補助計畫定位的參考,以下說明。 一.技術成熟度用來衡量技術開發階段   這是技術成熟度最單純的應用方法,但因為每種技術領域都可其特殊的技術開發脈絡,所以可以根據NASA原有的技術成熟度,修改成貼近該技術領域需求的技術成熟度指標。目前有看過軟硬體TRL指標、綠能&能源TRL指標、ICT TRL指標、生醫(新藥、生物製劑、醫材)TRL指標等[5]。 二、技術成熟度用來管理技術研發風險   研究開發需投入大量的人力、物力,而研究成果的不確定性又很高,所以需要有良好的技術研發管理。技術成熟度對技術研發管理而言,是風險的概念,一般而言,TRL階段與技術風險是反向關係,也就是說TRL階段越高,技術風險越低[6]。   需要考慮的面向包括[7] ,(1)現在技術成熟度在哪一階段?以及我們投入研發後,希望達到的技術成熟度目標為何?(2)從現在的技術成熟度到專案需要的技術成熟度,要精進這項技術到底有多難?(3)這項特定技術如果開發成功,對於全面技術目標而言的重要性如何? 三、機構角色以及補助計畫定位   TRL指標可用來明確區分研發機構角色定位,例如工研院內部運用TRL指標做為技術判斷量化評估指標,並且工研院需將技術成熟度提升到TRL6或7,以克服技術面的問題,進行小型試量產,才能跨越死亡之谷讓業界接手商業化[8]。   TRL指標也可以用來區分補助計畫的標的範圍,例如美國國防部傾向投資TRL 4階段技術,美國國防部培養TRL4以及4以下的技術到TRL6階段,使得這些技術能更順利的進入技術市場,其原因在於TRL程度越低,成功商品化的不確定性以及風險就越高,而TRL4階段技術項目,是美國國防部可以承受的風險程度[9]。 肆、結論   TRL指標現在已被廣泛的運用在技術評估工作上,透過量化的指標,協助研發人員或是技術管理人員方便掌握每個技術開發案的現況,例如現在技術在TRL哪個階段,技術開發結束後,TRL預計會到達哪個階段。確定目標之後,就可以進一步評估這個計畫開發案的風險並評估組織需投入的資源。   TRL是一個簡易的技術評估指標,但如果要以此做出全面性的技術策略,似乎就還是有所不足,因此,可以再搭配其他技術評估變項,發展為全面性的技術風險管理評估指標,可能可以搭配技術開發困難度指標,用以評估TRL往上提升一級的困難度程度[10],也可以搭配技術需求價值指標[11],這項技術順利成功的話,對整個系統開發而言的價值高低,價值非常高的話,就值得花更多資源與人力去投資。   由此可知,應該可以積極運用TRL指標,用來評估政府技術補助計畫,協助大學技轉辦公室管理各研發團隊之技術開發進程,也可提供技術移轉潛在廠商清楚設定技術規格,減低技術供給方與技術需求方之間的認知差異,進而提升技術移轉成功率,也就可以拉近政府經費投入與研發成果產出的差距。 [1] 行政院國家科學委員會,行政院國家科學委員會102年年報,頁24、98(2013),http://www.most.gov.tw/yearbook/102/bookfile/ch/index.html#98/z,最後瀏覽日2015/07/21。 [2] John C. Mankins, NASA, Technology Readiness Levels: A White Paper (1995). [3] id. [4] US DEPARTMENT OF DEFENSE (DoD), Technology Readiness Assessment (TRA) Guidance (2011), http://www.acq.osd.mil/chieftechnologist/publications/docs/TRA2011.pdf (last visited July 22, 2015). [5] Lewis Chen,<Technology Readiness Level>,工研院網站,http://www.sti.or.th/th/images/stories/files/(3)ITRI_TRL.pdf (最後瀏覽日:2015/07/22)。 [6] Ricardo Valerdi & Ron J. Kohl, An Approach to Technology Risk Management (2004), http://web.mit.edu/rvalerdi/www/TRL%20paper%20ESD%20Valerdi%20Kohl.pdf (last visited July 22, 2015). [7] John C. Mankins, Technology Readiness and Risk Assessments: A New Approach, ACTA ASTRONAUTICA, 65, 1213, 1208-1215 (2009). [8] 邱家瑜、蔡誠中、陳禹傑、高皓禎、洪翊恩,<工研院董事長蔡清彥 以新創事業連結全球市場 開創屬於年輕人的大時代>,台灣玉山科技協會,http://www.mjtaiwan.org.tw/pages/?Ipg=1007&showPg=1325 (最後瀏覽日:2015/07/22)。 [9] Ricardo Valerdi & Ron J. Kohl, Massachusetts Institute of Technology, An Approach to Technology Risk Management, http://web.mit.edu/rvalerdi/www/TRL%20paper%20ESD%20Valerdi%20Kohl.pdf (last visited July 21, 2015). [10] 同註7。 [11] 同註7。

日本總務省暫緩《電波法》「取消無線電臺外資限制」修正案

  現行日本《電波法》第5條第1項規定,具有以下要件者不予頒發無線電臺執照,一、非日本國籍者;二、外國政府及其代表;三、外國公司或集團;四、法人、組織,其代表為前三款所列之人員,或者佔其管理人員三分之一以上或三分之一以上表決權之法人或組織。   前日本首相菅義偉內閣時期,總務省於今年6月召開專家會議,認為衛星通訊領域將帶來災害預測、交通遙測及智慧農業等各領域的新興應用,太空新創產業發展充滿了無限的可能性,為避免新創公司產生募集資金之困難,擬修正《電波法》,刪除「外資具三分之一以上表決權之法人或組織不予頒發無線電臺執照」之限制,以促進太空衛星新創產業發展。   然而,日本新首相岸田文雄內閣於今年10月15日由總務省舉行專家會議,提出不同見解,認為應就各無線通訊產業訂定不同程度之外資監管政策,如地區型無線廣播電臺產業、商業電視頻道產業及衛星通訊產業等,分別就其對經濟安全所涉層面進行不同程度之外資管制,故總務省決定暫緩《電波法》修正案,將持續蒐集專家意見進行研議。

日本特許廳利用人工智慧審查專利與商標申請

  日本特許廳(Japan Patent Office,JPO)從去(2016)年12月開始,與NTT Data公司合作,使用人工智慧(Artificial Intelligence,簡稱AI)來系統化的回答有關專利問題,且依成果顯示,與原先運用人力回復的成果相當;JPO因此決定於今(2017)年夏天開始,將AI技術分階段應用於專利及商標的審查案,並期望能於下一會計年度(2018年4月至2019年3月),在審查業務中全面運用AI技術。   JPO指出,透過AI技術能有助於將專利及商標審查程序中繁冗的檢索程序簡化,以專利審查為例,可搜尋大量文件與檔案,進行專利先前技術檢索,以確保相關技術尚未獲得專利保護,同時也可以協助專利分類;此外,商標審查亦可利用AI之圖像辨識技術比對圖片及標誌,找出潛在的類似商標。   AI技術被證實能提升審查效率,並減輕審查人員檢索與比對部份的工作負擔,有助於抑制人工審查的長時間工作型態,根據2017年日本特許廳現況報告(特許庁ステータスレポート2017),於導入AI技術後,原本從申請到審查完成平均約2年左右之審查時間,期望可在2023年將審查期間降到14個月,讓日本成為智慧財產系統審查最快且品質最好的國家之一。 「本文同步刊登於TIPS網站(https://www.tips.org.tw)」

2011年個人資料外洩事件與前年相比減少128件,總數為1551件-預測賠償金額比前年擴大1.5倍

  日本2011年個人資料外洩事件及事故的件數比前年減少為1551件,但洩漏的個人資料筆數卻超過前年一成以上,約有600萬筆個人資料外洩。從數字來看預估的賠償金額是超過1900億日幣。   日本網路資安協會(JNSA)與資訊安全大學研究所的原田研究室及廣松研究室共同針對報紙集網路媒體所報導的個人資料外洩相關事件及事故所進行的調查所做的結論。   新力集團旗下的海外公司雖然發生合計超過1億筆的大規模個人資料外洩的意外,但此一事故並無法明確判別是否屬於個人資料保護法的適用範圍,因此從今年的調查對象裡排除。   在2011年發生的資料外洩事件有1551件,比起前年的1679件減少128件,大約跟2009年所發生的個人資料外洩差不多水準。外洩的個人資料筆數總計約628萬4363筆,與前年相較約增加70萬筆。平均1件約洩漏4238筆個人資料。   將事故原因以件數為基礎來分析,可以發現「操作錯誤」佔全體的34.8%為第一位,其次是「管理過失」佔32%,再接下來是「遺失、忘記帶走」佔13.7%。但以筆數來看,值得注意的是「管理過失」佔37.7%最多,但「操作錯誤」就僅有佔2.3%的少數。   再以佔全體事件件數5%的「違法攜出」就佔了全體筆數的26.9%;在佔全體件數僅有1.2%的「違法存取」卻在筆數佔了20.9%,可以看到平均每一件的受害筆數有開始膨脹的傾向。   再者從發生外洩原因的儲存媒體來看,紙本佔了以件數計算的68.7%的大多數,以USB記憶體為首的外接式記憶體佔了10.1%;但以筆數計算的話,外接式記憶體佔了59.1%、網路佔了25.5%的不同的發生傾向。   從大規模意外來看,金融機關與保險業界是最值得注意,前10件裡佔了7件。從發生原因來看,「違法攜出」及「內部犯罪」所造成的事故10件中有4件,其次是「管理過失」。規模最大的是山陰合同銀行的受委託人將業務所需的165萬7131件個人資料攜出的事故。   依據2011年所發生的事件及事故的預估賠償額是1899億7379萬日幣。遠超過前年的1215億7600萬日幣。平均一起事件預估損害賠償金額有1億2810萬日幣,每人平均預估賠償金額是4萬8533日幣。

TOP