首批奈米標章三月核發

 

 

  國內推出的「奈米標章」日前開放申請,第一批受理的奈米產品是與人體未直接碰觸的奈米光觸媒脫臭塗料、光觸媒抗菌瓷磚、及光觸媒抗菌燈管等三項產品,經濟部可望在今年3月核發第一批標章,並在今年內再開放五項奈米產品申請。


  目前國內生產相關奈米磁磚廠商有泉耀科技等、奈米燈管業者有台灣日光燈及東亞照明等、奈米塗料廠商有台灣富萊寶科技等都可望提出申請,有機會成為第一  批拿到奈米標章的廠商,因我國也是全球第一個推出奈米標章國家,對政府積極推動發展奈米產業助益大。


  經濟部指出,第一批僅開放三項奈米產品,是基於安全起見,以未與人體直接碰觸的產品為主,其他與人體直接接觸的奈米紡織品、奈米化妝品及保養品等尚未納入,第二批開放五項奈米產品也還未敲定。

 

本文為「經濟部產業技術司科技專案成果」

※ 首批奈米標章三月核發, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=271&no=0&tp=1 (最後瀏覽日:2026/02/21)
引註此篇文章
你可能還會想看
紐約市實施《生物辨識隱私法》強化生物特徵保護

  伴隨人工智慧、大數據及雲端運算浪潮,生物辨識技術逐漸成為日常生活的一部分。所謂生物辨識技術,是指利用個人獨特之生物特徵辨識個人的技術。生物特徵包含任何人類生理或行為特徵,只要能夠滿足普遍性、獨特性、不變性及可蒐集性 ,即可作為生物辨識之資訊。由於生物辨識技術能利用生物特徵達到識別與驗證個人身分,因而引發公眾對隱私、資安等議題的關注。   對此,紐約市於2021年7月21日也開始正式施行《生物辨識隱私法》(biometric privacy act) ,期能藉由限制業者利用生物辨識技術以及賦予消費者訴訟權利作法,促成隱私權的週全保障。   該法主要有三大部分: 一、規範生物辨識資訊範圍,包含但不限於(1)視網膜或虹膜掃描(2)指紋或聲紋(3)手或臉部立體掃描或是其他可用於識別之特徵。就前開生物特徵,要求業者應在所有消費者入口處放置清晰顯眼的標誌,搭配簡單易懂方式揭露其蒐集、保留、儲存消費者生物辨識資訊行為。同時,也明文禁止業者將消費者生物辨識資訊以販賣、租賃、交易或是分享方式交換任何相關價值或利益。 二、提供受侵害之消費者訴訟權與法定賠償請求權。但是,就單純未符合揭露要求之業者,該法給予30天的補救期間,要求消費者應於起訴前30天通知業者改善,一經改善即不得再起訴。 三、闡明政府相關部門不適用本法。金融機構、業者與執法部門共享生物辨識資訊,以及單純以影像、圖像蒐集而未分析識別情形則豁免揭露規範。   綜上,紐約市於該法創設訴訟權、法定賠償數額及豁免事由,預料將會是紐約市企業隱私保護政策重要指標,而值得我們繼續關注其發展與影響。

脫歐協議草案:英國將繼續保護已註冊或已授予的智慧財產權

  歐盟委員會(European Commission)於2018年2月28日公佈了歐盟與英國脫歐協議草案(The draft Brexit Withdrawal Agreement),其中規定在英國將會持續地保護先前已註冊或已授予的智慧財產權。   根據該協議草案第50(1)條規定,先前在歐盟已註冊或被核准的商標、設計或植物品種權的持有人,在過渡期結束之前,不須再經任何復審,視同已在英國註冊且具可實施性的智慧財產權。而關於地理標誌、原產地名稱和地方傳統特色,在第50(2)條亦有類似規定。   該協議草案有:智慧財產權註冊程序之規定(第51條);英國繼續就歐盟特定會員國已註冊之商標或外觀設計提供保護(第52條);英國繼續就未註冊的共同體設計提供一定程度的保護(第53條);繼續保護數據庫(第54條);申請歐盟商標和共同體之植物品種權享有優先審查權(第55條);在英國申請植物補充保護證書享有優先權(第56條)及權利耗盡(第57條)等規定。   惟歐洲專利體系以歐洲專利公約(European Patent Convention)為基礎。 因此,有關專利的相關規定未在英國脫歐協議草案出現,亦未在將來的一元專利系統(Unitary Patent system)中被提及,而此系統係源自於兩項歐盟的規章。   目前該協議草案已由歐盟委員會提出,首先將讓歐盟各成員國和歐洲議會先進行磋商,最後再與英國進行協商。

美國運輸部公布自駕車3.0政策文件

  美國運輸部(Department of Transportation)於2018年10月4日公布「自駕車3.0政策文件」(Preparing for the Future of Transportation: Automated Vehicles 3.0)」,提出聯邦政府六項自駕車策略原則: 安全優先:運輸部將致力於確認可能之安全風險,並促進自駕車可帶來之益處,並加強公眾信心。 技術中立:運輸部將會依彈性且技術中立之策略,促進自駕車競爭與創新。 法令的與時俱進:運輸部將會檢討並修正無法因應自駕車發展之交通法令,以避免對自駕車發展產生不必要之阻礙。 法令與基礎環境的一致性:運輸部將致力於讓法規環境與自駕車運作環境於全國具備一致性。 主動積極:運輸部將主動提供各種協助,以建構動態且具彈性之自駕車未來,亦將針對車聯網等相關補充性技術進行準備。 保障並促進自由:運輸部將確保美國民眾之駕駛自由,並支持透過自駕科技來增進安全與弱勢族群之移動便利,進而促進個人自由。   「自駕車3.0政策文件」並建立五個策略,包括利益相關人參與、典範實務(best practice)、自願性標準、目標研究(Targeted research)與規範現代化等,配合以上原則進行。美國運輸部並肯認其先前提出之「安全願景2.0(A Vision for Safety)」中之安全性架構,並鼓勵技術與服務開發商持續遵循自願性之安全評估,並重申將依循自我認證(self-certification)而非特定認證管制途徑,以促進規範之彈性。

德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

TOP