首批奈米標章三月核發

 

 

  國內推出的「奈米標章」日前開放申請,第一批受理的奈米產品是與人體未直接碰觸的奈米光觸媒脫臭塗料、光觸媒抗菌瓷磚、及光觸媒抗菌燈管等三項產品,經濟部可望在今年3月核發第一批標章,並在今年內再開放五項奈米產品申請。


  目前國內生產相關奈米磁磚廠商有泉耀科技等、奈米燈管業者有台灣日光燈及東亞照明等、奈米塗料廠商有台灣富萊寶科技等都可望提出申請,有機會成為第一  批拿到奈米標章的廠商,因我國也是全球第一個推出奈米標章國家,對政府積極推動發展奈米產業助益大。


  經濟部指出,第一批僅開放三項奈米產品,是基於安全起見,以未與人體直接碰觸的產品為主,其他與人體直接接觸的奈米紡織品、奈米化妝品及保養品等尚未納入,第二批開放五項奈米產品也還未敲定。

 

本文為「經濟部產業技術司科技專案成果」

※ 首批奈米標章三月核發, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=271&no=67&tp=1 (最後瀏覽日:2026/02/09)
引註此篇文章
你可能還會想看
英國持續推動智慧電表電量消費資料所有權之管制

愛沙尼亞首創「數位遊牧簽證」吸引高收入高專業的數位遊牧民族

  2020年6月3日,愛沙尼亞議會通過了「外國人法(Aliens Act)」修正案,批准了全球首創專為「數位遊牧民族(Digital Nomads, DN)」設計的「數位遊牧簽證(Digital Nomad Visa, DNV)」,並於同年8月1日正式開辦。   「數位遊牧民族(DN)」為近年來興起的一種工作與生活型態,意指無需固定的工作時間與地點,只要有網路就能工作,通常是邊工作邊旅遊、經常在各國移動的生活型態,一般傳統的工作簽證或旅遊簽證較難直接適用。   今年因COVID-19疫情影響,許多人轉為遠距工作,也使更多人成為DN。而以數位治國聞名全球的愛沙尼亞,於2014年推出e-Residency(數位公民計畫)向全球招收數位公民後,進一步推出「數位遊牧簽證(DNV)」。DNV申請人可以是受雇者、企業經營者或是自由工作者,必須為外國企業工作、經營外國企業或是客戶位於國外(但不禁止在當地兼職);其次,申請人必須證明近6個月每月3,504歐元(約新臺幣12萬元)的收入,取得DNV者即可到當地居住一年。該政策看重其高收入、高消費能力,以及高專業性,能在IT、金融、行銷或相關領域獨立工作,為當地科技業提供創意與技術,帶動產業、增加產值;其在境內期間的收益亦可成為充實國家稅捐的標的,在經濟上具有正面效益,在社會上亦可增加多元性、開拓國際事業,並提升國際知名度。

國防訓儲制將有重大變革,研發納入替代役

  行政院跨部會會議審查通過替代役條例修正草案,將研發役納入替代役,取代現行的國防訓儲制,惟研發替代役規劃內容並不等同於現行國防訓儲制,例如:國防訓儲限制預官申請,但研發替代役並未限制,此將使海外人才、海外小留學生等符合科技研發資格的碩博士,均可申請回台進入科技廠商服研發替代役。   此外,國防訓儲制在入伍短暫基礎訓練後,就如同後備軍人進入民間科高科技企業領一般工程師高薪,並享有分紅、配股,被外界抨擊為不公,未來研發替代役將改革這項缺點。將來申請服研發替代役者,在一年多的法定義務役期過後,超過的服役期限替代役男始可領取一般工程師薪水。   研發替代役役期除一年四個月法定義務役外,最長可申請延長三年,但期限要報院核定,具有彈性。至於科技大廠最關心的員額數量,仍將依內政部替代亦審議委員會審查各需用機關替代議員額需求要點第3點進行審查並視兵源調度,然員額可望逐年提升。   內政部並將進一步訂定研發替代役申請辦法,使海外人才可透過網路申請,預料研發替代役將可吸引海外學人歸國貢獻研發,對提升產業競力將有助益。替代役修正修正草案送行政院院會通過後,將送交立院審議,行政院表示會積極爭取法案在本會期過關,最快九十六年可實施。

德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

TOP