今年1月16日(週三),美國聯邦最高法院將韓國LG電子公司與台灣廣達(Quanta)電腦公司的訴訟案排入審判的程序之中,並預計今年六月底左右會有相關的判決結果產生。此案件之所於引人注目,主要是本案爭議的內容在於LG公司將其記憶體相關的專利權授權給美國Intel公司。而台灣廣達公司自Intel公司購買部分經LG授權的零組件,並用來製造筆記型電腦。
LG公司發現此情形之後,遂向美國法院控告廣達公司的行為侵害該公司的專利權,LG公司主張其授權並不包含對Intel公司以外的廠商,所以廣達公司的行為侵害該公司的權利;但廣達公司則主張Intel公司已取得授權,有權對外銷售,因此廣達公司的行為是合法的行為。
由於美國地方法院判決對LG有利,所以廣達公司不服因而提起上訴,本案也已經進入聯邦最高法院的訴訟程序,最後判決結果如何,將影響未來專利權擁有者與被授權者之間的關係,究竟收取權利金的範圍是否及於供應鏈或中下游的廠商等,成為眾人關注的焦點,也因此相關產業人士皆十分關注本案的發展。
本文為「經濟部產業技術司科技專案成果」
日本文化廳發布《人工智慧著作權檢核清單和指引》 資訊工業策進會科技法律研究所 2024年08月21日 日本文化廳為降低生成式人工智慧所產生的著作權風險,保護和行使著作權人權利,於2024年7月31日以文化廳3月發布的《人工智慧與著作權的思考》、內閣府5月發布的《人工智慧時代知識產權研究小組中期報告》,以及總務省和經濟產業省4月份發布的《人工智慧事業指引(1.0版)》的資料為基礎,制訂發布《人工智慧著作權檢核清單和指引》[1]。 壹、事件摘要 日本文化廳的《人工智慧著作權檢核清單和指引》主要分成兩部分,第一部分是「人工智慧開發、提供和使用清單」,依循總務省和經濟產業省4月份發布的《人工智慧事業指引(1.0版)》的區分方式,分為「AI開發者」、「AI提供者」、「AI(業務)使用者(事業利用人)」和「業務外利用者(一般利用人)」四個利害關係人,依不同的身份分別說明如何降低人工智慧開發前後的資料處理和學習等智慧財產權侵權風險的措施,以及提供和使用人工智慧系統和服務時,安全、適當地使用人工智慧的技術訣竅。 第二部分則是針對著作權人及依著作權法享有權利的其他權利人(例如表演人)的權益保護,從權利人的思考角度,建議正確理解生成式AI可能會出現什麼樣的(著作權)法律上利用行為[2]。其次,說明近似侵權的判斷要件、要件的證明、防止與賠償等可主張的法律上請求、可向誰主張侵權、權利主張的限制;於事先或發現後可採取的防止人工智慧侵權學習的可能措施;最後對侵權因應建議權利人可發出著作權侵權警告、進行訴訟、調解等糾紛解決,並提供可用的法律諮詢窗口資訊。 貳、重點說明 日本文化廳於此指引中,針對不同的角色提出生成式AI與著作權之間的關係,除更具體的對「AI開發者」、「AI提供者」、「AI(事業與一般利用人)」,提醒其應注意的侵權風險樣態、可能的合法使用範圍,並提供如何降低風險的對策。同時,從權利人角度提供如何保護權益的指引,並提供可用的法律諮詢窗口資訊。重點說明如下: 一、不符合「非享受目的」的非法AI訓練 日本著作權法第30條之4規定適用於以收集人工智慧學習資料等為目的而進行的著作權作品的複製,無需獲得權利人的授權,但是,該指引特別明確指出「為了輸出AI學習資料中包含的既有作品的內容,而進行額外學習;為讓AI產出學習資料庫中所包含的既有作品的創作表現;對特定創作者的少量著作權作品進行額外個別學習」,這三個情況係同時存有「享受」著作目的,不適用無須授權的規定[3]。 二、不能「不當損害著作權人利益」 從已經採取的措施和過去的銷售紀錄可以推斷,資料庫著作權作品計劃有償作為人工智慧學習的資料集。在這種情況下,未經授權以人工智慧學習為目的進行複製時,屬於「不當損害著作權人利益」的要求,將不適用(日本)著作權法第30條之4規定[4]。在明知某個網站發布盜版或其他侵害著作權的情況下收集學習資料,則使用該學習資料開發的人工智慧也會造成著作權侵權,人工智慧開發者也可能被追究著作權責任[5]。不應使用以原樣輸出作為學習資料的著作權作品的學習方法,如果該已訓練模型處於高概率生成與學習資料中的著作物相似的生成結果的狀態等情況下,則該已訓練模型可能被評價為「學習資料中著作物的複製物」, 對銷毀該模型的請求即有可能會被同意[6]。 三、使用生成式AI即可能被認定為可能有接觸被侵害著作[7] 權利人不一定必須證明「生成所用生成AI的學習資料中包含權利人的作品。如有下述AI使用者認識到權利人的作品的情況之一,權利人亦可透過主張和證明符合「依賴性(依拠性)」要件,例如:AI使用者將現有的著作物本身輸入生成AI、輸入了現有著作物的題名(標題)或其他特定的固有名詞、AI生成物與現有著作物高度類似等。 四、開發與提供者也可能是侵權責任主體[8] 該指引指出,除利用人外,開發或提供者亦有負侵權責任的可能,特別是--人工智慧頻繁產生侵權結果,或已意識到人工智慧很有可能產生侵權結果,但沒有採取措施阻止。於其應負侵權責任時,可能被請求從訓練資料集中刪除現有的著作權作品,甚至是刪除造成侵權的人工智慧學習創建的訓練模型。即便人工智慧學習創建的訓練模型一般並非訓練資料的重製物,不過如果訓練後的模型處於產生與作為訓練資料的著作權作品相似的產品的機率很高的狀態,該指引認為可能會被同意[9]。 參、事件評析 人工智慧(AI)科技迎來契機,其生成內容隨著科技發展日新月異,時常可以看見民眾在網路上分享AI技術生成的圖像和影音。是否能將AI生成的圖案用在馬克杯或衣服販售,或是將Chat GPT內容當作補習班教材,均成為日常生活中的訓練AI的資料與運用AI的產出疑義。 各國固然就存有人類的「創造性貢獻」是人工智慧生成結果是否受著作權法保護、可受著作權保護的條件,單純機械性的AI自動生成,基本上欠缺「人的創造性」,非著作權保護對象,已有明確的共識。如何以明確的法令規範降低AI開發過程的侵權風險或處理成本?賦予AI訓練合法使用既有著作,應有的界限?衡平(賦予)既有著作的著作權人權益?AI服務提供者應負那些共通義務?是否合理課予AI服務提供者應負之侵權損害責任?AI使用者之侵權責任是否須推定符合「接觸」要件?等等諸此進一步的疑義,則仍在各國討論、形成共識中。 而從日本文化廳的《人工智慧著作權檢核清單和指引》,我們可以清楚的看出,在樹立成為AI大國的國家發展政策下,其著作權法雖已賦予AI訓練資料合法的重製,但在指引是明列已屬「享受」目的訓練行為、不合理損害著作權利用的情況、明示開發服務者應負的揭露義務與可能承擔侵權責任,彰顯其對權利人權益平衡保護的努力。值得於我國將來推動落實AI基本法草案中維護著作權人權益原則時,做為完善相關法令機制的重要參考。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1] 文化庁著作権課,「AI著作権チェックリスト&ガイダンス」,令和6年7月31日,https://www.bunka.go.jp/seisaku/bunkashingikai/chosakuken/seisaku/r06_02/pdf/94089701_05.pdf,最後閱覽日:2024/08/20。 [2] 詳見前註,頁31。 [3] 詳見前註,頁7。 [4] 詳見前註,頁8。 [5] 詳見前註,頁9。 [6] 詳見前註,頁9。 [7] 詳見前註,頁35。 [8] 詳見前註,頁36。 [9] 詳見前註,頁42。
盜用無線網路溢波有罪乎? 日本發布深化與推動開放科學之建言日本學術會議所屬「深化與推動開放科學檢討委員會(オープンサイエンスの深化と推進に関する検討委員会)」為深化與推動開放科學發展,於2020年5月28日發布建言(原文為提言)。本建言接續國際間提倡的「資料驅動型科學」、與日本Society5.0政策內「資料驅動型社會」構想,目的在於凸顯研究資料共享概念與共享平台的重要性,梳理現行措施下的問題,並提出政策與制度調適建議。 建言提出三項觀察。其一,研究論文投稿至期刊出版機關,論文尚未審查通過並發表前,論文本身與經整理之研究資料的著作財產權雖屬於原作者所有,出版機關原則會另與投稿作者約定,作者不得對外公開其研究成果與研究資料,目的在於避免未經審查通過的成果與資料散布,造成錯誤訊息流通。COVID-19疫情蔓延期間,美國國家衛生研究院(National Institutes of Health, NIH)、國立研發法人日本醫療研究開發機構(AMED)等研究資助機構,則依循過往大規模傳染病發生時的慣例,與期刊出版機關等達成協議並發表聲明,只要作者同意釋出,即允許有關論文發表前得先將研究成果與資料與WHO及外界共享,期待藉資料快速公開流通協助對抗疫情。這些措施體現了資料的重要性與共享可能性,但共享後,利用方新取得的資料應如何繼續以適切方式公開,則有賴資料的數位平台機制完備現行作法的不足。其二,資料本身非著作物,不直接受著作權法保護,各國法例亦較少另外賦予資料庫(database)法定權利。日本則在不正競爭防止法增訂「提供予特定對象資料(限定提供データ)」保護制度,定義非法取用原僅授權特定人使用之資料的行為,將落入不當競爭行為的範疇,強化營業與數位資料利用之法定權利保護。其三,近年來,日本公平交易委員會因應Google、Amazon可能運用資料蒐集達成市場壟斷的疑慮,重新檢討其反托拉斯政策,顯示資料利用亦可能牴觸反托拉斯法;歐盟一般資料保護規則(GDPR)的規範強度與密度較日本國內法為高,則讓資料利用涉及個資時,無法僅以日本個資法為標準。資料利用涉及多部法規,增加資料利用者合法使用的難度,從而降低研究者再利用研究資料的意願。 基於上述觀察,本建言提出以下法制與政策建議:(1)統整不正競爭防止法、個人資料保護法、著作權法等相關法規範,同時考量研究資料本身特性與社會應用途徑,作成指引供外界遵循;(2)國家應資助學術界或進行研發活動之機構,建構得長期蒐整、保存與共享研究資料之平台,協助實現跨領域或跨部門的研究資料融合利用與價值創造;(3)針對研究成果採用的原始樣本(如岩石、土壤、生物、物質等),以及人文社會科學領域研究的原始資料(如文書紀錄、書籍、技術等),建立永久保存之制度。
聯網自動駕駛車(CAV)聯網自動駕駛車(Connected and Autonomous Vehicles, CAV)是一種自動化聯網載具,係自動駕駛車以及互聯汽車兩種科技的集合,而CAV僅須符合其一即可稱之。按英國交通部的定義,自動駕駛車係為「無須稱職的駕駛者管理各種道路、交通與天候條件之下,能安全完成旅程的車輛。」目前上市產品中已可見部份自動駕駛車的身影,諸如自動路邊停車系統、先進輔助駕駛系統、自動緊急煞車系統等等。 互聯車輛科技允許車輛之間的互相溝通以及更廣泛聯網,目前已有的互聯車輛科技如動態導航系統、緊急求救系統(eCall)等,特別是歐盟欲規範未來新車都必備eCall系統,該系統可偵測事故發生並自動開啟安全氣囊、撥打求救電話並開啟全球定位系統(GPS),以利醫護人員快速救援。目前有三種正在發展中,用以支援互聯車輛的科技:V2V(車輛之間互聯)、V2I(車輛與交通設備互聯)、V2X(車輛與任何適當的科技互聯)。而發展CAV有六種益處,包括提升行車安全、減少交通阻塞、減少碳排放、更多自由時間可運用、任何人都可平等地使用CAV以及改良道路之設計。 我國刻正實施行政院於2014年5月核定之第2階段「智慧電動車輛發展策略與行動方案」,推動智慧電動車整車及零組件性能提升,協助廠商提升製程及資訊應用功能;研析國際驗證及測試規範,完善智慧電動車產業價值鏈。