英國公平貿易署(Office of Fair Trading,簡稱OFT)公布於2007年底針對網路商店是否遵守消費者保護相關規範進行調查之結果,該項調查選定超過500家購物網站,就其是否遵守消費者保護法令,例如是否於網站上告知其公司所在地址、是否善盡告知消費者相關權利之義務、以及是否踐行標價透明化之規定等實際運行狀況進行調查統計。結果顯示,近乎有31%的網站並未確實遵守歐洲法律對於遠距交易的全額退費規範;有15%並未告知消費者其享有7天鑑賞期之權利;有14%的網站未告知確切之地址;另有40%的網站並未完全將價錢透明化,尤其並未告知商品於標示價格外必要之附加費用,而係於結帳時方告知,故OFT統計,每年消費者因此繳付的非預期費用總計約達一億英鎊。
於英國,消費者進行網路購物,受到遠距販售與電子商務相關規範之保護,例如2000年通過的消費者保護(遠距販售)規則(The Consumer Protection (Distance Selling)Regulations 2000)即就遠距交易中最重要的消費權利保障事項加以規範,此一法規主要適用於企業對消費者的組織性遠距交易活動,惟並不適用於與不動產買賣、金融服務提供、自動販賣設施、利用公共電話進行之行銷以及拍賣行為。主要規範重點,包括交易完成前必要資訊之提供、猶豫期內隨時解除契約之權限、契約解除權之例外、解約後獲得費用返還之權利、消費者返還貨品之義務、卡片付款受詐欺之解約權利等。
歐盟執委會於6月公布新的一般策略架構(Common Strategic Framework,CSF),在歐盟第七期研究架構計畫(FP7)於2013年告一段落後,CSF鎖定的研發策略方向仍會繼續,然此同時也引發一些不同的意見。為此執委會於6月間邀集產官學研進行討論,並於6月底揭示了新的計畫—Horizon 2020—。 歐盟執委會早於2011年初即發佈歐盟競爭力白皮書,揭櫫了未來新一期研究架構計畫之政策方向,其對於現有政策結構與資助機制有不小的衝擊。 新的CSF以氣候變遷、能源、健康與中小企業為研發資助之主軸,而為瞭解並蒐集各界包括大學、國有研究機構、各國政府以及企業界的意見,執委會於今年2月間發布了意見徵詢綠皮書以預先蒐集各界意見。根據執委會的規劃,新的CSF除要求教育體系應跟隨業界研發人才需求的腳步外,更鼓勵中小企業未來投入創新活動,因為執委會發現,歐洲的企業研發投資經費總額,僅有日本和南韓的一半。 歐盟執委會表示,氣候變遷、能源、健康與中小企業為未來研究資源資助與投入的方向,以呼應歐洲民眾的期待。此外,針對目前計畫所存在的行政效率不彰、缺乏透明性及計畫遲延等問題,也將列入未來改善重點,為此,歐洲議會已於6月進行FP7期中檢討時通過解決方案,日後將靠各國分別於歐盟及國家層級的計畫執行與管理中落實。 Horizon 2020計畫將於2014至2020年間斥資800億歐元於研發與工作機會的創造,以提升歐盟競爭力,後2013時期(post-2013)歐盟則將致力於化解計畫執行的分歧,確實協調各國投入新計畫的步調一致性。
日本經濟產業省公布自動駕駛後續之政策方針報告書 英國猶疑應否開放人獸混合細胞之胚胎幹細胞研究英國之胚胎幹細胞研究活動,係根據「1990年人類受精與胚胎學法」(Human Fertilisation and Embryology Act 1990,HF&E Act)和「2001年人類受精與胚胎學規則」(Human Fertilisation and Embryology (Research Purposes) Regulations 2001,Research Purposes Regulations)之規定,授權由「人類受精與胚胎學管理局」(Human Fertilisation and Embryology Authority,HFEA)依法管理。 新堡大學東北英格蘭幹細胞中心(North East England Stem Cell Institute)Lyle Armstrong博士,在去年底向HFEA申請一項涉及混合人類與動物細胞製造胚胎幹細胞之研究許可;其計劃利用細胞核轉置技術,將牛的卵子細胞核取出,植入人類體細胞核,並刺激其分裂形成胚囊或早期複製胚胎,用以研究培養病患所需身體組織之技術。過去HFEA從未曾核准過此類研究,僅核准過2件利用細胞核轉置技術和單性活化卵母細胞製造胚胎幹細胞株作為醫學研究之申請。此研究申請訊息一流出,即引起保守團體嘩然及指責,要求英國政府應盡速立法,禁止製造人獸混合細胞之實驗活動。面對各界抗議聲浪,HFEA表示,會暫緩此申請案。 事實上,去年12月英國健康部提出了一篇報告-「人工生殖及胚胎學法之檢討」(Review of the Human Fertilisation and Embryology Act),建議國會應儘速立法規範人類動物細胞混合研究。而英國政府與人民究竟能否接受混合人類動物遺傳細胞研究之合法性、合道德性,則為未來立法動向之重要指標。
用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).