美國總統川普於2025年11月24日發布行政命令(Executive Order)啟動創世紀任務(Launching The Genesis Mission),旨在建立美國科學與安全AI平臺(下稱AI平臺),整合聯邦政府長期累積之科學資料集、國家研發及運算資源,訓練可自動化研究、加速科學發現之AI模型,強化國家安全、提高勞動生產力及研發投資報酬率,鞏固美國AI技術領導地位。 行政命令重點如下: (1)權責分配:由能源部長(Secretary of Energy)確保將執行創世紀任務所需資源統一整合至AI平臺,並訂定安全計畫。由總統科學技術助理(Assistant to the President for Science and Technology, APST)領導,透過國家科學技術委員會(National Science and Technology Council, NSTC)協調所有參與之行政部門。 (2)AI平臺之運作:提供能源部國家實驗室超級電腦、安全雲端運算環境等高效能運算資源、AI建模與分析框架、運算工具、各學科領域基礎模型,並在適法前提下,提供聯邦政府所管理之資料集、開放科學資料集或能源部生成之合成資料集。 (3)識別國家科學技術挑戰:能源部長應提交創世紀任務優先應對之國家重要科學技術挑戰清單,涵蓋先進製造、生物科技、關鍵原物料、核能、量子資訊科學、半導體與微電子學領域,經APST審查並與NSTC參與成員研議後定案。 (4)跨部門協調及外部參與:召集相關部門參與,訂定資源配置計畫整合各部門可用資料與基礎設施。提供獎補助,鼓勵私部門參與符合任務目標之AI驅動科學研究。設立研究獎學金、實習與學徒制計畫,提供AI平臺使用權及AI賦能科學發現培訓。在維護聯邦研究資產安全及公共利益最大化之前提下,建立標準化合作夥伴機制,與擁有先進AI、資料、運算能力或科學專業知識之外部夥伴合作。 行政命令就前述事項設定執行時程,且明定自發布之日起1年內及此後每年,能源部長應向總統提交報告,說明各事項之運作情況與達成成果。
英國將以NHS基因體醫學服務續行十萬基因體計畫英國政府所提出的「10萬基因體計畫(100,000 Genomes Project)」將於2018年底達成目標,而將以NHS基因體醫學服務(NHS Genomic Medicine Service)作為續行計畫,以促進個人化醫療的發展。 NHS基因體醫療服務的目的在於促進罕見疾病與癌症的診斷以及患者治療的效率,並預期在未來5年達到五百萬組基因定序,以提供具備全面性(comprehensive)以及公正性(equitable)的基因檢測。為達此目的,NHS基因體醫療服務包含5個主要內涵:連結基因體研究中心以成立國家基因體實驗室服務(national genomic laboratory service)、新的國家基因體實驗室檢測文庫(new National Genomic Test Directory)、全基因體定序的相關規範,並與英國基因體公司(Genomic England)合作開發資訊基礎設施(informatics infrastructure)、臨床基因體醫學服務(clinical genomics medicine services)以及發展基因體醫學中心服務(Genomic Medicine Centre service)、NHS負擔統合性的監管職責。 在以NHS基因體醫療服務作為續行計畫的狀況下,若合格的研發人員欲以患者的基因資料進行新藥或是新治療方式的開發需事先取得患者的同意。另外,從2019年開始,全基因定序將被納入特定患者的治療過程中,如罹患特定罕見疾病或具有治癒困難性的成年患者以及所有患有嚴重疾病的孩童患者,以加速疾病的診斷以及減少侵入性治療的次數。
美國參眾兩院提出嚴禁專利藥廠簽訂授權學名藥協議系列法案美國過去透過Hatch-Waxman Act之立法,建立起「簡易新藥申請」(Abbreviated New Drug Application,ANDA)制度,促使學名藥廠開發學名藥後,能較迅速地通過藥品查驗登記,且首家獲得ANDA上市許可的學名藥廠還可享有180日的市場專屬保障;但是,專利藥廠近年卻設計出授權學名藥(Authorized Generic Drug)、原廠學名藥(Rebranded Generic Drug)和專利與學名藥訴訟和解協議(Brand-Generic Litigation Settlement)等智慧財產權管理策略,用以瓜分專利到期後的學名藥市場。 為了矯正此種實務發展,今(2007)年初美國參眾兩院先後提出內容一致的「公平處方藥競爭法案」(Fair Prescription Drug Competition Act, S.438)和「修正聯邦食品藥品化妝品法禁止授權學名藥上市法案」(To amend the Federal Food, Drug, and Cosmetic Act to prohibit the marketing of authorized generic drugs, H.R.806),禁止專利藥廠自行或間接製造銷售原廠學名藥,或是授權第三人製造銷售授權學名藥,企圖透過立法方式,確保首家提出ANDA的學名藥廠,在其所獲180日市場專屬期間內,不會因專利藥廠利用推出原廠或授權學名藥之策略而稀釋掉該學名藥的市佔率。但本法案未禁止專利藥廠與獲得市場專屬保護的學名藥廠簽訂類似協議;假使該學名藥廠經商業判斷後寧願與專利藥廠簽訂協議,僅需依現行規範將該協議通報FTC和司法部即可。 美國參議院亦提出「保護可負擔學名藥取得法案」(Preserve Access to Affordable Generics Act, S.316),禁止專利藥廠直、間接簽訂給予ANDA申請者任何對價(不限金錢)且要求其不得研發、製造、銷售或販賣該學名藥之專利侵權訴訟和解協議;例如專屬給付和解協議(Exclusion Payment Settlement)、逆向給付和解協議(Reverse Payment Settlement)等。
因應使用「生成式AI(Generative AI)」工具的營業秘密管理強化建議2024年7月1日,美國實務界律師撰文針對使用生成式AI(Generative AI)工具可能導致的營業秘密外洩風險提出營業秘密保護管理的強化建議,其表示有研究指出約56%的工作者已經嘗試將生成式AI工具用於工作中,而員工輸入該工具的資訊中約有11%可能包含公司具有競爭力的敏感性資訊或客戶的敏感資訊,以Chat GPT為例,原始碼(Source Code)可能是第二多被提供給Chat GPT的機密資訊類型。系爭機密資訊可能被生成式AI工具提供者(AI Provider)用於訓練生成式AI模型等,進而導致洩漏;或生成式AI工具提供者可能會監控和存取公司輸入之資訊以檢查是否有不當使用,此時營業秘密可能在人工審查階段洩漏。 該篇文章提到,以法律要件而論,生成式AI有產生營業秘密之可能,因為營業秘密與著作權和專利不同之處在於「發明者不必是人類」;因此,由生成式 AI 工具協助產出的內容可能被視為營業秘密,其範圍可能包括:公司的內部 AI 平台、基礎的訓練算法和模型、輸入參數和輸出結果等。惟基於目前實務上尚未有相關案例,故生成式AI輸出結果在法律上受保護的範圍與條件仍需待後續的判例來加以明確。 實務專家提出,即使訴訟上尚未明確,企業仍可透過事前的管理措施來保護或避免營業秘密洩露,以下綜整成「人員」與「技術」兩個面向分述之: 一、人員面: 1.員工(教育訓練、合約) 在員工管理上,建議透過教育訓練使員工了解到營業秘密之定義及保護措施,並告知向生成式AI工具提供敏感資訊的風險與潛在後果;培訓後,亦可進一步限制能夠使用AI工具的員工範圍,如只有經過培訓及授權之員工才能夠存取這些AI工具。 在合約方面,建議公司可與員工簽訂或更新保密契約,納入使用生成式AI的指導方針,例如:明確規定禁止向生成式AI工具輸入公司營業秘密、客戶數據、財務信息、未公開的產品計劃等機密資訊;亦可增加相關限制或聲明條款,如「在生成式AI工具中揭露之資訊只屬於公司」、「限制公司資訊僅能存儲於公司的私有雲上」等條款。 2.生成式AI工具提供者(合約) 針對外部管理時,公司亦可透過「終端使用者授權合約(End User License Agreement,簡稱EULA)」來限制生成式AI工具提供者對於公司在該工具上「輸入內容」之使用,如輸入內容不可以被用於訓練基礎模型,或者該訓練之模型只能用在資訊提供的公司。 二、技術方面: 建議公司購買或開發自有的生成式AI工具,並將一切使用行為限縮在公司的私有雲或私有伺服器中;或透過加密、防火牆或多種編碼指令(Programmed)來避免揭露特定類型的資訊或限制上傳文件的大小或類型,防止機密資訊被誤輸入,其舉出三星公司(Samsung)公司為例,三星已限制使用Chat GPT的用戶的上傳容量為1024位元組(Bytes),以防止輸入大型文件。 綜上所述,實務界對於使用生成式AI工具可能的營業秘密風險,相對於尚未可知的訴訟攻防,律師更推薦企業透過訴訟前積極的管理來避免風險。本文建議企業可將前述建議之作法融入資策會科法所創意智財中心於2023年發布「營業秘密保護管理規範」中,換言之,企業可透過「營業秘密保護管理規範」十個單元(包括從最高管理階層角色開始的整體規劃建議、營業秘密範圍確定、營業秘密使用行為管理、員工管理、網路與環境設備管理、外部活動管理,甚至是後端的爭議處理機制,如何監督與改善等)的PDCA管理循環建立基礎的營業秘密管理,更可以透過上述建議的做法(對單元5.使用管理、單元6.1保密約定、單元6.4教育訓練、單元7.網路與環境設備管理等單元)加強針對生成式AI工具之管理。 本文同步刊登於TIPS網站(https://www.tips.org.tw)