經過兩年的研議溝通,由國際食品標準委員會(Codex Alimentarius Commission,CODEX)生技衍生食品小組(Task Force on Foods Derived from Biotechnology,TFFBT)所研擬的「重組DNA植物成分低量摻雜之重組DNA植物來源食品安全評估準則之附件草案」(Draft Annex to the Guideline for the Conduct of Food Safety Assessment of Foods Derived from Recombinant-DNA Plants on Low-Level Presence of Recombinant-DNA Plant Material,LLP草案),終於日前送交CODEX大會決議通過。
關於植物來源食品內基改物質低量呈現(Low-Level Presence)的問題之所以受到國際間高度關切,其背景因素,其實是來自於全球各地域對於基因改造食品之食品安全審查進度狀態不一之情況使然。以最明顯的美國和歐盟為例,因為,對於植物來源食品而言,其所使用的植物原料,例如穀物、豆類、油菜種子等,在種植、運送至成品途中,尤其是在採收過程中,無可避免地均有可能會混雜到某些鄰近的合法基改植物原料;而目前國際現況是,許多在美國已通過食品安全評估之基改食品植物原料,在歐盟卻遲未獲得許可,而那些意外混雜了在美國為合法基改植物原料的食品,出口至尚未核准那些經混雜基改原料食品之國家時,則會因此被拒絕進口,而形成貿易上阻礙。
針對此問題,自2006年起,TFFBT特別召集成立一個工作小組,由美國出任小組主席,並與德國及泰國擔任共同主席,負責研擬LLP草案,以提供一套較簡易評估程序,專門針對這些混雜了低量的在出口國家已經合法、但在進口國家尚未通過食品安全檢驗之重組DNA植物成分食品之情形,提俱一套安全評估方法供進口國家政府參考,藉此,一方面確保這些摻雜低量重組DNA食品之安全性,另方面也不致令進口者因其產品含有低度摻雜而銷耗掉太過的貿易利益。
LLP草案對於摻雜低量重組DNA成份之進口國家而言,其較重要具實質意義的部份,係在於資料庫之建立、共享資訊之快速使用(rapid access)等機制的導入。研議期間,工作小組即表示會與相關國際組織聯繫,搭配建立適當之資訊資料庫。而負責籌設該資料庫的國際糧農組織(FAO)則表示,其除將運用其已建立的「國際食品安全及動植物健康入口網」(International Portal on Food Safety, Animal and Plant Health,IPFSAPH)外,並計劃與經濟合作發展組織(OECD)進行合作,引用「OECD生物追蹤產品資料庫」(OECD BioTrack Database)內依CODEX「重組DNA植物來源食品安全評估準則」(Guideline for the Conduct of Foods Safety Assessment of Foods Derived from Recombinant-DNA Plants (CODEX Plant Guideline),CODEX植物準則)所蒐羅之資訊,彙集各類相關資訊為一整合網站,並開放給公眾使用。
本文為「經濟部產業技術司科技專案成果」
日本《人工智慧技術研究開發及應用促進法》簡介 資訊工業策進會科技法律研究所 2025年06月25日 為全面性且有計畫地推動人工智慧(以下簡稱AI)相關技術之研發及應用,同時為改善國民生活和促進國家經濟健康發展做出貢獻,日本內閣於2025年2月28日提出《人工智慧技術研究開發及應用促進法》(以下簡稱本法)草案。 [1] 本法進一步於同年5月28日經參議院表決通過[2] ,通過之條文內容與2月28日提出之草案並無二致,惟5月27日內閣委員會另外通過20點附帶決議[3] ,其中涵蓋共多具體措施。本法於6月4日公布施行[4] ,以下將介紹本次日本《人工智慧技術研究開發及應用促進法》及附帶決議內容。 壹、立法緣由 近年AI技術及應用蓬勃發展,然而日本卻深感國內對AI發展不如其他主要國家,依據科學技術創新推進事務局(科学技術・イノベーション推進事務局,以下簡稱科技事務局)釋出之立法概要,本次立法主要有兩大理由 [5]: 一、國內AI技術開發、應用起步緩慢 科技事務局引用史丹佛大學於2024年所發布之《AI指數報告》(AI Index Report 2024),該份報告彙整2023年各國對於AI相關產業之民間投資額,如下圖所示。從此圖可知,作為世界主要經濟體的日本,對於AI的民間投資於2023年竟僅有6.8億美元,遠遠不及美國的670.22億美元、中國77.6億美元及英國37.8億美元。[6] 圖一、各國對於AI相關產業民間投資額統計 資料來源:STANFORD INSTITUTE FOR HUMAN-CENTERED AI [HAI], Artificial Intelligence Index Report (2024). 此外,根據日本總務省於2024年所發布之調查結果,如下圖所示,日本僅有9.1%的國民有使用過生成式AI之經驗,相較於中國的56.3%、美國的46.3%、英國的39.8%及德國的34.6%,仍有相當程度之落後。 [7] 圖二、各國國民使用過生成式AI之經驗調查 資料來源:総務省,令和6年版情報通信白書 不僅國民的AI使用率低,日本總務省亦針對企業將AI運用於其業務進行調查,如下圖所示,目前有在使用AI之企業僅有46.8%(包含已取得具體成效及尚未取得成效),其餘53.2%之企業則正在測試階段、正在商議導入或至今仍未討論導入。對比中國的95.1%、德國的80.6%及美國的78.7%,雖不如國民使用率落後,但仍有不少進步空間。[8] 圖三、各國企業業務中AI運用情形調查 資料來源:総務省,令和6年版情報通信白書 二、多數國民對於AI仍感到不安 科技事務局引用KPMG於2023年所發布的《全球AI信任研究報告》(Trust in AI: A Global Study 2023),僅有13%的日本國民認為現行法規已足以確保AI可被安全使用,亦低於中國的74%、德國的39%及美國的30%。此調查結果亦如實反映出有77%的日本國民迫切希望國內能針對AI訂定相關規範。[9] 除上述兩項主要理由外,考量日本有需要進一步促進創新發展、積極應對AI產生之風險,因此科技事務局決定訂立新的AI法規。 貳、立法重點 《人工智慧技術研究開發及應用促進法》總計28條,共分為四個章節,包含第一章總則(第1條至第10條)、第二章基本政策實施(第11條至第17條)、第三章人工智慧基本計畫(第18條)及第四章人工智慧戰略本部(第19條至第28條)。考量依法規條文及章節順序不易說明,以下將以科技事務局所提供之立法概要之脈絡進行說明。 一、目的 第1條即說明本法旨在全面且有計畫地制定AI相關政策,推動AI技術之研發與應用,以改善國民生活並為國民經濟發展做出貢獻。 二、基本理念 第3條亦規定AI技術之研發與應用應以提升AI產業之國際競爭力為目標,希冀藉由AI技術創造高效率新業務,並得以應用於國民日常生活與經濟活動之各階段,另考量AI技術若經不當使用,將有助漲犯罪行為或洩漏個資等風險發生之可能性,故應確保AI技術之正確使用。最後,同條亦規定日本應在AI技術之研發與應用上進行國際合作,並努力在國際合作中取得主導地位。 三、AI戰略本部 本法第四章皆為設立AI戰略本部相關之條文,第19條、第20條及第25條第2項規定AI戰略本部應由內閣所設立,其職責有以下兩項: (一)研擬AI基本計畫草案,並推動相關事宜。 (二)促進AI相關技術研發及應用相關重要政策之規劃、提案及統籌協調等事宜。 (三)除本法規定的事項外,總部相關必要事項由政令規定。 為使AI戰略本部可順利履行上述職責,第25條賦予AI戰略本部認為有必要時,得向行政機關、地方公共團體、獨立行政機構、地方獨立行政機構的首長以及公共機關的代表,要求提供資料、發表意見、進行說明及提供其他必要協助。 第21條至第28條則為與本部組成相關之規定,其規定AI戰略本部組成成員包含以下三個職位: (一)部長:由總理擔任,掌管總部事務,並領導監督總部工作人員。 (二)次長:由官房長官及AI戰略大臣(由總理任命)擔任,負責協助部長履行職責。 (三)由除部長、次長以外的所有國務大臣組成。 四、AI基本計畫 如上所述,AI戰略本部重要職責之一,即研擬AI基本計畫草案。依第18條規定,總理應將AI戰略本部所研擬之AI基本計畫草案,提請內閣決定是否同意草案內容,待內閣作成決定後,總理應立即公布AI基本計畫。 同條亦明定AI戰略本部應以前述第二節的基本理念及以下第五節的基本政策實施之相關規定為基礎,研擬AI基本計畫草案,其應涵蓋之事項包含: (一)AI技術研發及應用政策實施的基本方針。 (二)為促進AI技術研發及應用,政府應全面性且有計畫地實施政策。 (三)政府為能全面性且有計畫地實施政策所採取的必要措施。 五、基本政策實施 第二章所涵蓋之第11條至第17條則規定政府應執行之基本政策實施事項,包含: (一)促進AI技術研發 依第11條規定,國家應採取措施促進AI技術研發,使AI技術可順利從基礎研究階段進展至實際應用階段,並在研發機構間建立研發成果得以互相流通之制度,同時提供研發成果資訊。 (二)提升基礎設施建置與使用 依第12條規定,國家應採取措施建置AI基礎設施,包含AI技術研發及應用所需之大規模資料處理、資通訊、電磁紀錄儲存等設備及為特定目的所收集之資料集等,並使AI基礎設施得以廣泛供研發機構或企業所使用。 (三)確保符合國際規範 依第13條規定,國家應根據國際規範制定基本方針並採取其他必要措施,以確保AI技術之研發及應用得以適當之方式進行。 (四)確保人力資源 依第14條規定,國家應與地方政府、研發機構和企業緊密合作,並採取必要措施,以確保、培訓和提升各領域人才的專業素質,使其具備AI技術從基礎研究至實際應用於民眾生活或經濟活動之各階段所需之專業知識,並提升其專業知識之廣度及深度。 (五)提升教育 依第15條規定,國家應提升與AI技術相關之教育與學習、辦理推廣活動或採取其他必要措施,以增進大眾對AI技術之認知與興趣。 (六)研究調查 依第16條規定,國家應掌握國內外AI技術研發及應用之最新趨勢,並進行有助於AI技術研發及應用發展之研究與調查,包含分析因不正當目的或不適當方法研發應用所導致國民受侵害之案例,及針對不正當使用之因應對策。 同時,國家亦應根據此類研究調查成果,向研發機構、企業和其他人員提供指導、建議和最新資訊,並採取其他必要措施。 (七)國際合作 依第17條規定,國家應進行AI技術研發及應用之國際合作,積極參與國際規範之制定過程。 六、職責 第4條至第8條分別規定國家、地方政府、研發機構、企業與國民應各司其職,其職責分述如下: (一)國家 依第4條規定,國家應依前述第二節的基本理念,制定並實施促進AI技術研發及應用之基本政策實施相關之計畫。此外,國家應在行政機關間積極應用AI技術,以提升行政效率。 (二)地方政府 依第5條規定,地方政府應依前述第二節的基本理念,在與國家進行適當分工後,結合各地方特色,制定並實施自主政策,以促進AI技術之研發及應用。 (三)研發機構 依第6條規定,大學及研發機構應依前述第二節的基本理念,積極進行AI技術之研發,推廣其成果,培育具有專業性和廣泛知識之人才,並協助國家與地方政府之政策實施,而國家與地方政府則應促進大學研究活動,尊重研究人員自主權及將各大學之特色納入考量。 此外,研發機構應進行跨領域或綜合性研發,同時為有效推動AI技術研發,應綜合考量人文科學及自然科學等領域之專業知識。 (四)企業 依第7條規定,任何企業有意開發或提供使用AI技術之產品或服務,或任何其他有意在其業務活動中使用AI技術,應依前述第二節的基本理念,提升其業務之效率和品質。 此外,上述企業應透過積極使用AI技術創造新興產業,並須配合執行國家依第4條所定之措施及地方政府依第5條所定之措施。 (五)國民 國民應依前述第二節的基本理念,加深對AI技術之認知與興趣,並盡可能配合執行國家依第4條所定之措施及地方政府依第5條所定之措施。 七、附帶決議 本次立法過程除條文本身外,5月27日內閣委員會亦通過20點附帶決議,針對政府實施本法時應採取之適當措施進行補充說明,以下摘錄重點說明 :[10] (一)政府應以「以人為本之AI社會原則」為基礎,進行AI技術研發及應用。 (二)政府制定AI基本計畫和基本方針,或執行政策措施時,應將風險降至最低,並考量推廣AI之益處。 (三)企業和國民應充分了解AI應用之注意事項及規避風險之措施,並透過教育使國民了解AI合理使用方法及其風險。 (四)政府針對AI應用導致之失業或貧富差距擴大採取必要措施。 (五)政府應透過法規打擊AI技術之濫用,特別是利用兒童圖像產生之深偽色情內容,並加強對網站管理員刪除違法內容之監管,保護受害者。 (六)政府和民間機構將合作開發以日語為基礎之大型語言模型。 (七)政府應消除新創企業等新進者之壁壘,創造公平開放之市場環境。 (八)政府應將AI定位為國家戰略重要領域。 (九)政府應考慮電力供需,策略性地建設資料中心。 (十)政府應以跨學科之觀點強化對AI人才之培養,並確保足夠有投資。 (十一)政府應積極營造有利於國家、地方政府、企業應用AI之環境,並避免因營運效率提升而出現裁員情形。 (十二)政府應執行降低AI風險之措施,並進行公私合作以確保安全。 (十三)政府於進行調查和指導時,應避免施加過重之負擔或要求過多資訊揭露,同時考慮保護企業之商業機密等智慧財產權。 (十四)政府於國民權益受害之個案進行調查和指導時,應即時自企業或服務使用者和人工取得資訊,以便迅速發現個案並因應。 (十五)針對依《廣島人工智慧進程國際行為準則》負有報告義務之企業,政府應最大限度地減少其與現行國內法規之報告義務之重複。 (十六)政府應不斷修訂本法及其他相關計畫與方針,以確保AI應用能促進國民生活改善和國民經濟發展,並及時應對新風險。 (十七)AI戰略總部之組織架構,應消除各部會、機構垂直分工造成之弊端,並積極自民間招募人才。 (十八)政府應儘早成立由AI倫理、法律和社會議題等領域專家組成的智庫機構。 (十九)如出現現行法規難以因應之新風險,政府應考慮導入風險導向之概念,依風險等級而採取不同監管措施。 (二十)因應AI應用產生之智慧財產權相關侵權行為,政府應參考其他國家之情形,探討因應措施。 參、總結 日本緊接著韓國之後,成為亞洲第二個在法律層級通過AI法規的國家,惟相較歐盟或韓國通過的AI法,日本在法律條文的訂定上,主要是針對政府與各界之職責進行規範,而缺乏對於AI技術開發或應用風險之監管。儘管附帶決議中較多具體內容,仍須待AI基本計畫訂定後,日本對於AI技術開發或應用之監管模式才會有較清晰之雛形。 考量到日本尚有通過20點附帶決議,日後仍可關注AI戰略本部如何依據AI法及附帶決議擬定AI基本計畫,未來或可成為我國人工智慧法制政策規劃之參考依據。 [1]人工知能関連技術の研究開発及び活用の推進に関する法律案(第217回閣法第29号)。 [2]〈議案情報:人工知能関連技術の研究開発及び活用の推進に関する法律案〉,参議院,https://www.sangiin.go.jp/japanese/joho1/kousei/gian/217/meisai/m217080217029.htm(最後瀏覽日:2025年6月11日)。 [3]参議院,〈人工知能関連技術の研究開発及び活用の推進に関する法律案に対する附帯決議〉,https://www.sangiin.go.jp/japanese/gianjoho/ketsugi/current/f063_052701.pdf(最後瀏覽日:2025年6月11日)。 [4]人工知能関連技術の研究開発及び活用の推進に関する法律法律(令和7年法律第53号)。 [5]內閣府,〈人工知能関連技術の研究開発及び活用の推進に関する法律案(AI法案)概要〉,https://www.cao.go.jp/houan/pdf/217/217gaiyou_2.pdf(最後瀏覽日:2025年6月11日)。 [6]STANFORD INSTITUTE FOR HUMAN-CENTERED AI [HAI], Artificial Intelligence Index Report (2024), https://hai.stanford.edu/assets/files/hai_ai-index-report-2024-smaller2.pdf (last visited June 11, 2025) [7]総務省,〈令和6年版情報通信白書〉,https://www.soumu.go.jp/johotsusintokei/whitepaper/ja/r06/pdf/n1510000.pdf(最後瀏覽日:2025年6月11日)。 [8]総務省,〈令和6年版情報通信白書〉,https://www.soumu.go.jp/johotsusintokei/whitepaper/ja/r06/pdf/n1510000.pdf(最後瀏覽日:2025年6月11日)。 [9]KPMG, Trust Inartificial Intelligence: Country Insights on Shifting Public Perceptions of AI (2023), https://assets.kpmg.com/content/dam/kpmgsites/xx/pdf/2023/09/trust-in-ai-country-insight.pdf.coredownload.inline.pdf (last visited June 11, 2025). [10]参議院,〈人工知能関連技術の研究開発及び活用の推進に関する法律案に対する附帯決議〉,https://www.sangiin.go.jp/japanese/gianjoho/ketsugi/current/f063_052701.pdf(最後瀏覽日:2025年6月11日)。
虛擬的永恆與往生者個人資料運用逝者已矣,已不再是定律。2020年2月,韓國文化廣播公司(MBC)播放了一部紀錄片,紀錄了電視台製作團隊實現一位母親以虛擬現實VR(virtual reality)與已逝女兒重逢的過程,製作團隊透過動態捕捉技術,錄下一位兒童演員的動作,用以塑造往生者的行為動態,並重現還原往生者的聲音,製作出往生者的的三維虛擬影像。葡萄牙Henrique Jorge公司建立一個名為ETER9的社交網路,將每位用戶與AI進行配對,AI會學習複製該用戶於社交網路之行為,並可代其發表回覆與評論,即使其用戶已往生,AI仍持續運行。現今許多科技新創公司正著手研究「數位來生」,使往生者於數位中重生。 牛津網際網路研究所(Oxford Internet Institute)的一項最新研究顯示,估計約50年後,Facebook內往生者的帳號數量將超過存活者的帳號數量。而FaceBook可視為現今人類物種歷史上最大的人類行為資料庫,曾經創建過個人資料的用戶都不復存在,但他們的數位資訊卻永存於網際網路中,但在多數國家,往生者的資料並不是個人資料保護法令所含括的保護客體,往生者個人資料之運用勢必成為道德與法律上的重要課題。 英國阿斯頓大學的Harbinja教授表示,或可由遺囑中有無處置往生者個人資料之指示作為參考,但其亦表示在某些國家存在無法保證遺囑可得完全兌現的問題,例如,在英國遺囑中決定了個人資料的處理方式,仍可能僅被視為是個人意願,類似遺囑中選擇火葬的決定仍可能被執行者和繼承人推翻,且無法強制執行。 我國個人資料保護法施行細則第2條規定:「本法所稱個人,指現生存之自然人。」,所保護的個人資料對象是指「現生存有生命」的自然人,並不包括「往生者」,而歐洲部分國家允許繼承人行使被繼承人之個人資料保護相關權利,例如匈牙利規定本人可指定特定人或由直系親屬行使本人往生後之權利、西班牙則規定繼承人有權行使GDPR第15條資料查詢權、第16條更正權和第17條刪除權,而義大利則規定親屬代表可基於保護家庭之因素行使往生者於GDPR第15條至第22條之權力。ETER9便可讓用戶設置死後停止AI代替回覆的功能,也可以指定授權往生後的帳號負責人。在數位來生的議題中,我國應可參酌部分歐洲國家運用GDPR規定從而規範往生者個人資料權利之方式,進而探討我國對往生者個人資料運用之相關議題。
日本修正《氫能基本戰略》以實現氫能社會日本於2023年6月6日召開有關「再生能源、氫能等相關」內閣會議,時隔6年修正《氫能基本戰略》(水素基本戦略),其主要以「水電解裝置」、「燃料電池」等9種技術作為戰略領域,預計15年間透過官民投資15兆日元支援氫能相關企業,希冀盡速實現氫能社會。 日本早於2017年即提出氫能基本戰略,由於氫氣在使用過程中不會產生溫室氣體或其他污染物質,被認為是可以取代傳統化石燃料的潔淨能源,欲以官民共同合作,無論在日常生活、生產製造等活動下,都能透過氫能發電方式,達成氫能社會,故推出降低氫能成本、導入氫能用量的政策,並以2030年為目標,將氫能的用量設定為30萬噸、同時將氫能成本降為30日元/Nm3(以往價格為100日元/Nm3),使其成本與汽油和液化天然氣成本相當。為配合2021年《綠色成長戰略》,日本再次擴充目標,透過活用綠色創新基金,集中支援日本企業之水電解裝置和其他科技裝置,預計在2030年的氫能最大供給量達每年300萬噸、2050年可達2000萬噸。 然而隨著各國紛紛提出脫碳政策和投資計畫,再加上俄烏戰爭之影響,全球能源供需結構發生巨大變化,例如:德國成立氫氣專案(H2 Global Foundation)投入9億歐元,以市場拍賣及政府補貼成本的方式推動氫能、美國則以《降低通膨法》(The Inflation Reduction Act),針對氫能給予稅率上優惠措施等,在氫能領域進行大量投資,故為因應國際競爭,日本重新再審視國內氫能發展,並修正《氫能基本戰略》,除提出「氫能產業戰略」及「氫能安全保障戰略」外,本次主要修正之重要措施摘要如下: 1.維持2030年、2050年氫能最大供給量之設定,但新增2040年時提出氫能的最大供給量目標為1200萬噸。 2.由於水電解裝置在製造綠氫時不可缺,爰設定相關企業於2030年前導入15GW左右的水電解裝置,同時確立日本將以氫能製造為基礎之政策。 3.鑒於氫能科技尚不純熟、氫能價格前景不確定性高,在氫能供應鏈的建構上有較大風險,故透過保險制度分擔風險,以提高經營者、金融機構投資氫能之意願。 4.藉由氫能結合渦輪、運輸(汽車、船舶)、煉鐵化學等其他領域,期以氫氣發電渦輪、FC卡車(使用氫氣燃料電池Fuel Cell之卡車)、氫還原製鐵為中心,强化國際競爭力,創造氫能需求。 5.預計10年間,以產業規模需要在都市圈建設3處「大規模」氫能供給基礎設施;另依產業特性預計於具相當需求之地區,建設5處「中等規模」基礎設施。
經濟合作與發展組織發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2023年2月23日發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》(Advancing accountability in AI: Governing and managing risks throughout the lifecycle for trustworthy AI)。本報告整合ISO 31000:2018風險管理框架(risk-management framework)、美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)人工智慧風險管理框架(Artificial Intelligence Risk Management Framework, AI RMF)與OECD負責任商業行為之盡職調查指南(OECD Due Diligence Guidance for Responsible Business Conduct)等文件,將AI風險管理分為「界定、評估、處理、治理」四個階段: 1.界定:範圍、背景、參與者和風險準則(Define: Scope, context, actors and criteria)。AI風險會因不同使用情境及環境而有差異,第一步應先界定AI系統生命週期中每個階段涉及之範圍、參與者與利害關係人,並就各角色適用適當的風險評估準則。 2.評估:識別並量測AI風險(Assess: Identify and measure AI risks)。透過識別與分析個人、整體及社會層面的問題,評估潛在風險與發生程度,並根據各項基本價值原則及評估標準進行風險量測。 3.處理:預防、減輕或停止AI風險(Treat: Prevent, mitigate, or cease AI risks)。風險處理考慮每個潛在風險的影響,並大致分為與流程相關(Process-related)及技術(Technical)之兩大處理策略。前者要求AI參與者建立系統設計開發之相關管理程序,後者則與系統技術規格相關,處理此類風險可能需重新訓練或重新評估AI模型。 4.治理:監控、紀錄、溝通、諮詢與融入(Govern: Monitor, document, communicate, consult and embed)。透過在組織中導入培養風險管理的文化,並持續監控、審查管理流程、溝通與諮詢,以及保存相關紀錄,以進行治理。治理之重要性在於能為AI風險管理流程進行外在監督,並能夠更廣泛地在不同類型的組織中建立相應機制。