CODEX增訂低量摻雜重組DNA植物成分之食品安全評估準則

  經過兩年的研議溝通,由國際食品標準委員會(Codex Alimentarius Commission,CODEX)生技衍生食品小組(Task Force on Foods Derived from Biotechnology,TFFBT)所研擬的「重組DNA植物成分低量摻雜之重組DNA植物來源食品安全評估準則之附件草案」(Draft Annex to the Guideline for the Conduct of Food Safety Assessment of Foods Derived from Recombinant-DNA Plants on Low-Level Presence of Recombinant-DNA Plant Material,LLP草案),終於日前送交CODEX大會決議通過。

 

  關於植物來源食品內基改物質低量呈現(Low-Level Presence)的問題之所以受到國際間高度關切,其背景因素,其實是來自於全球各地域對於基因改造食品之食品安全審查進度狀態不一之情況使然。以最明顯的美國和歐盟為例,因為,對於植物來源食品而言,其所使用的植物原料,例如穀物、豆類、油菜種子等,在種植、運送至成品途中,尤其是在採收過程中,無可避免地均有可能會混雜到某些鄰近的合法基改植物原料;而目前國際現況是,許多在美國已通過食品安全評估之基改食品植物原料,在歐盟卻遲未獲得許可,而那些意外混雜了在美國為合法基改植物原料的食品,出口至尚未核准那些經混雜基改原料食品之國家時,則會因此被拒絕進口,而形成貿易上阻礙。

 

  針對此問題,自2006年起,TFFBT特別召集成立一個工作小組,由美國出任小組主席,並與德國及泰國擔任共同主席,負責研擬LLP草案,以提供一套較簡易評估程序,專門針對這些混雜了低量的在出口國家已經合法、但在進口國家尚未通過食品安全檢驗之重組DNA植物成分食品之情形,提俱一套安全評估方法供進口國家政府參考,藉此,一方面確保這些摻雜低量重組DNA食品之安全性,另方面也不致令進口者因其產品含有低度摻雜而銷耗掉太過的貿易利益。

 

  LLP草案對於摻雜低量重組DNA成份之進口國家而言,其較重要具實質意義的部份,係在於資料庫之建立、共享資訊之快速使用(rapid access)等機制的導入。研議期間,工作小組即表示會與相關國際組織聯繫,搭配建立適當之資訊資料庫。而負責籌設該資料庫的國際糧農組織(FAO)則表示,其除將運用其已建立的「國際食品安全及動植物健康入口網」(International Portal on Food Safety, Animal and Plant Health,IPFSAPH)外,並計劃與經濟合作發展組織(OECD)進行合作,引用「OECD生物追蹤產品資料庫」(OECD BioTrack Database)內依CODEX「重組DNA植物來源食品安全評估準則」(Guideline for the Conduct of Foods Safety Assessment of Foods Derived from Recombinant-DNA Plants (CODEX Plant Guideline),CODEX植物準則)所蒐羅之資訊,彙集各類相關資訊為一整合網站,並開放給公眾使用。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ CODEX增訂低量摻雜重組DNA植物成分之食品安全評估準則, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=2853&no=67&tp=1 (最後瀏覽日:2026/02/21)
引註此篇文章
你可能還會想看
合成資料(synthetic data)

  「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。   在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。   英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。   技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。

關於軟體產品的智慧財產權保護建議

  近期軟體產品(特別是演算法)的智慧財產權保護受到各界廣泛注意,2022年12月美國實務界律師特別撰文對此提出相關智財權保護建議。軟體產品通常涉及演算法,指由人工智慧(AI)和分析組成,用於解決特定問題的一組規則。專利通常被企業預設為保護技術產品的最佳形式。   然而在2014年,美國最高法院在Alice Corp. v. CLS Bank International一案中可以發現將軟體申請專利保護可能存在風險,如:(一)軟體可能被認為是抽象概念(abstract ideas),非專利適格標的,而無法受專利法保護;(二)通常不易主張專利權,或可能在訴訟過程中因舉證責任造成機密資訊揭露等風險。因此該文作者認為難以受專利法保護之演算法、用於基於機器學習或訓練模型的資訊和資料集等軟體資料,亦可考慮透過營業秘密來保護,並提出以下營業秘密管理的建議: 1.員工教育訓練:建議企業可在僱傭的各階段(僱傭時、每年、終止時)採行相關措施、訓練,以減少營業秘密的竊用,及防止未來員工抗辯不知道該資訊是營業秘密。 2.機密標示:建議企業透過此階段審視組織對於機密文件之界定,再透過機密標示配合存取權限設定,協助企業控管與防止機密外流。 3.執行:瞭解需要受管理的營業秘密是什麼以及其為何重要。 4.監控和衡量員工參與度:建議企業採取相關監測機制檢視員工活動,及早發現離職動向與管控營業秘密資訊。 5.避免資訊揭露:建議企業應確保在向消費者或客戶行銷的過程中不洩露營業秘密,或至少採取相關保護措施,如簽訂保密契約。 6.確保資料安全:建議企業可建置網路安全策略、設置密碼、存取限制、外部設備使用下載或儲存限制等管控措施。   綜上所述,對於從事軟體開發的企業,除以專利保護產出成果外,還可從技術本質、後續是否容易主張、是否適合公開等面向,評估搭配營業秘密保護成果。並在選擇以營業秘密保護成果時,採行相關的管理措施避免營業秘密外洩而造成企業損失,包括:劃定需管理的營業秘密、制定員工教育訓練與相關管制措施,如機密標示、權限控管,並可搭配預警機制以便能夠即早發現異常。   本文同步刊登於TIPS網站(https://www.tips.org.tw)

資通安全法律案例宣導彙編 第4輯

美國國家公路交通安全管理局發布自駕車安全性評估相關法規預告

美國國家公路交通安全管理局(National Highway Traffic Safety Administration, NHTSA)於2025年1月15日發布「配備自動駕駛系統車輛之安全、透明度及評估計畫」(The ADS-equipped Vehicle Safety, Transparency, and Evaluation Program , AV STEP)法規預告(Notice of proposed rulemaking, NPRM),建立全國性自願評估與監督制度,以提高自駕車安全性之公共透明度,並促進其負責任布建。 根據《國家交通與機動車輛安全法》(National Traffic and Motor Vehicle Safety Act),自駕車在符合〈聯邦機動車輛安全標準〉(Federal Motor Vehicle Safety Standards, FMVSS)及州、地方法律的前提下,得於公共道路上行駛;若無法符合FMVSS之要求,則需進行豁免申請。惟不論採何種途徑,FMVSS皆未針對自駕車之安全性與性能進行評估,因此NHTSA提出AV STEP,為自駕車設計專門之豁免申請途徑,並針對不同自動化程度車輛提出涵蓋車輛設計、開發與運行之安全性審查條件,以對現行FMVSS之豁免規定進行補充。簡要說明如下: (1)需配置駕駛人之自駕車:需具備手動駕駛功能與清晰的交接程序,以於自駕系統失效時透過充分提示與反應時間,使駕駛人接管操作。 (2)完全由自駕系統操作之自駕車:監管著重於各種情況下皆能自主運作、回退(Fallback)機制需具遠端監控能力,且能自動進入最小風險狀態。 除上述要求外,申請者皆須提供第三方機構之獨立評估報告、說明自動駕駛系統故障之應對措施,並持續接受NHTSA監督。

TOP