eBay網站因販賣仿冒品被法國法院判決敗訴並須賠償原品牌業者

  繼eBay 於 今年6月4日因未制止網拍業者於eBay 網站上拍賣仿冒品被法國法院( The Tribunal de Grande Instance in Troyes)判決敗訴 、 須與網拍業者共同賠償精品業者愛瑪士 (Hermes)2萬歐元後,不到一個月的時間,另一法國法院( The Tribunal de Commerce in Paris) 於6月30日再度判定eBay因任由網拍業者拍賣仿冒物品而需賠償LVMH集團共3860萬歐元並禁止eBay在其網站上販賣LVMH集團旗下包括迪奧(Dior)、嬌蘭(Guerlain)、紀梵希(Givenchy)及Kenzo 4個品牌之香水。

 

  eBay 表示為了保護品牌業者的智慧財產權,其已投資了超過2000萬美元建置相關機制(The Verified Rights Owner) 讓品牌業者可以容易的發現仿冒的網拍品並通知eBay 將該物品下架。但愛瑪士及LVMH集團皆認為該機制尚不足以杜絕仿冒品的銷售。

 

  針對LVMH之判決,Vanessa Canzini, eBay 的發言人表示 “如果有仿冒品出現在eBay 的網站上, eBay會迅速地將該物品下架,但此次的判決非關仿冒品”。 Sravanthi Agrawal, eBay 的另一發言人表示 “此次判決的重點在銷售管制 (指LVMH集團企圖壟斷其銷售管道),因eBay 並非LVMH集團所授權的銷售管道之一”。 eBay 表示LVMH集團的壟斷行為將對消費者造成傷害,將代表消費者提起上訴。

 

  以上兩案經由法國法院針對拍賣網站提供平台販售仿冒品之判決結果預計將於國際間引發連鎖效應。一位美國智財律師表示美國法院目前認為在美國商標法下,eBay 有義務將仿冒品從其網站上移除。而法國法院的判決則更進一步要求拍賣網站在仿冒品被放上網站拍賣前就有義務制止其被拿出來販售。法國法院的見解如未被推翻將可能鼓勵其它國法院針對類似案件做出相同的判決結果。

相關連結
※ eBay網站因販賣仿冒品被法國法院判決敗訴並須賠償原品牌業者, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=2854&no=0&tp=1 (最後瀏覽日:2025/11/25)
引註此篇文章
你可能還會想看
Like or Not!德國地方法院針對facebook「讚」按鈕功能之判決

  日前有新聞報導,google將推出「+1」按鈕功能,用戶可以點擊該按鈕,向好友推薦特定的搜尋結果,市場上普遍預測google新增此「+1」按鈕功能,主要是用來跟facebook「讚」按鈕(Like Button)競爭。facebook「讚」按鈕功能已成為時下潮流新用語,諸如「給你一個讚」;而且還可以將facebook「讚」按鈕安裝在個人的部落格網頁、文章中。惟facebook的這項功能,一直以來也存在著侵害用戶個人隱私之疑慮。   德國柏林地方法院於今年(2011)03月14日針對facebook「讚」按鈕功能作出一則判決(LG Berlin, Beschluss vom 14.03.2011 - 91 O 25/11)。本案被告經營一項與原告相同的電子商務業務,並在其線上商店網頁中,安裝facebook「讚」按鈕(Gefällt-mir-Button)功能。判決中指出,安裝facebook「讚」按鈕,須運用facebook內建框架(iframe)語法,一旦安裝後,只要是登錄facebook的用戶,同時瀏覽被告網頁時,即使未點擊被告網頁上的「讚」按鈕,用戶的使用記錄都會回傳至facebook。但被告網頁上並未刊登任何有關提醒用戶注意該項資料蒐集、回傳之訊息。   原告因而主張,被告未盡到告知用戶有關個人資料蒐集、加工資訊之義務,已經違反電信服務法(Telemediengesetz,以下簡稱TMG)第13條規定,因而構成不正競爭防止法(Gesetz gegen den unlauteren Wettbewerb,以下簡稱UWG)第4條第11款規定之不允許交易行為。UWG第4條第11款規定「違反本質上涉及交易相對人(Marktteilnehmer)之利益的市場行為(Marktverhalten)有關之法律規定,亦屬於不允許的交易行為(unlautere geschäftliche Handlungen)。」   柏林地方法院認為,TMG第13條本質上係與個人資料保護有關之規定,與涉及交易相對人之利益的市場行為無關,故本案無UWG第4條第11款規定之情形,與不正競爭行為無關,原告之主張因欠缺請求權基礎而敗訴。   然而,值得注意的是,本案法院並未進一步針對被告行為是否違反TMG第13條「有關個人資料保護」之規定提出其見解。TMG第13條係依據「歐盟1995年個人資料保護指令」轉換而來,TMG第13條規定,若網站涉及個人資料的蒐集、加工行為,電信服務提供者(Diensteanbieter)有義務明確告知用戶相關訊息(包括明確告知用戶其可隨時撤回許可相關資料蒐集之表示等)。   爰此,被告於個人網頁安裝facebook「讚」按鈕功能,卻未告知用戶個人資料蒐集、加工之相關訊息,是否違反TMG第13條規定之告知義務,尚有待上級審加以定奪。而判決出爐後,也有專家建議,為避免有侵害個人資料之虞,在社群網站安裝facebook「讚」按鈕時,宜加註個人資料處理、保護之相關聲明。

韓國發布人工智慧基本法

韓國政府為支持人工智慧發展與建立人工智慧信任基礎,提升國家競爭力,韓國科學技術情報通訊部(과학기술정보통신부)於2025年1月21日公布《人工智慧發展與建立信任基本法》(인공지능 발전과 신뢰 기반 조성 등에 관한 기본법안,下稱AI基本法),將於2026年1月22日起生效。韓國《AI基本法》為繼歐盟《人工智慧法》(EU Artificial Intelligence Act)之後第二部關注人工智慧的國家級立法,並針對高影響人工智慧(고영향 인공지능)及生成式人工智慧進行規範,促進創新及降低人工智慧風險,將搭配進一步的立法與政策以支持人工智慧產業。 《AI基本法》有以下三個政策方向: 1. 人工智慧基本計畫:由科學技術情報通訊部制定並每三年檢討「人工智慧基本計畫」,經「國家人工智慧委員會」審議後實施,決定產業發展政策、培育人才、健全社會制度等事項。本法並設置人工智慧政策中心及人工智慧安全研究所,提供科學技術情報通訊部所需的研究與分析。 2. 扶持產業發展:以扶持中小企業及新創企業為發展方向,促進產業標準化的基本政策,爭取國際合作及海外發展。 3. 人工智慧倫理與安全性:政府公布人工智慧倫理原則,由相關機構及業者自主成立人工智慧倫理委員會,在政府發布的指引下建立貼近實務面的倫理指引。本法明確要求人工智慧產業必須負擔透明性及安全性義務,政府也推動認驗證制度,以確保人工智慧的可靠性。 韓國《AI基本法》將人工智慧發展方向及社會政策結合,明確要求政府制定人工智慧發展計畫並定期檢討,施行具體措施與設置必要組織,確立政府在人工智慧領域的角色,然產業界對於政府監管力度之意見有所分歧,為《AI基本法》後續相關政策及指引推動種下不確定性,值得持續追蹤相關動態作為我國人工智慧發展策略之參考。

日本公布「如何計算森林吸收的二氧化碳量」

  因應2021年10 月日本政府修訂的全球變暖對策計劃,訂立森林在2030年要達到3800萬噸的二氧化碳吸收量之目標,因此日本林業廳公布了「如何計算森林吸收的二氧化碳量」之方法,進一步展現森林吸收二氧化碳的功能,以提高民間企業和地方公共團體等公眾參與的植林、造林活動的意願,以及促進公眾對森林維護在全球暖化對策中的重要性認識。分別為下列三種計算方式: 森林一年吸收二氧化碳量的簡單計算方法   每1公頃森林一年吸收二氧化碳量=每公頃森林每年樹幹生長體積(m3/年·ha)×膨脹係數×(1+地下比率)×容積密度(t/m3)×碳含量×二氧化碳換算係數 林地復育增加森林吸收二氧化碳量的計算方法   因林地復育增加森林吸收二氧化碳量=有進行林地復育和沒有進行林地復育的森林估計累積量之差×膨脹係數×(1+地下比率)×容積密度(t/m3)×碳含量×二氧化碳換算係數 因種植森林土壤所維持之二氧化碳含量計算方法   因種植森林土壤所維持之二氧化碳含量=土壤平均碳累積量(tC/ha)×種植森林所保持的土壤量相關係數×種植森林之面積(公頃)×種植森林之年數×土壤流出時排放到大氣中的二氧化碳排放係數×二氧化碳換算係數   此份公告規範了日本未來如何計算森林吸收的二氧化碳量之方式,目前我國依據「國際氣候變遷專家委員會(IPCC)」建議公式,推估森林資源林木之碳貯存量,推估結果臺灣地區森林林木之碳貯存量約有754百萬公噸二氧化碳,每公頃平均碳存量約為每公頃378 公噸二氧化碳,對此亦可參考上述公式推算,以更了解我國的森林與碳管理關係。

新加坡資料共享法制環境建構簡介

新加坡資料共享法制環境建構簡介 資訊工業策進會科技法律研究所 2019年12月31日 壹、事件摘要   如何有效運用資料創造最大效益為數位經濟(Digital Economy)重點,其中資料共享(data sharing)是有效方法之一。新加坡自2018年以來推動「資料共享安排」機制(Data Sharing Arrangements, 下稱DSAs)與「可信任資料共享框架」(Trusted Data Sharing Framework),建構資料共享環境,帶動國內組織[1]資料經濟發展與競爭力。 貳、重點說明   自從2014年新加坡政府推行「2025智慧國家(Smart Nation)」以來,即積極鋪設國家數位經濟建設,大數據資料分析等數位科技發展為其重點,預估2022年60%國內生產總值將與數位經濟有關[2] 。其中,希望透過資料共享促進組織、政府、個人三方間資料無障礙流通,降低蒐集、處理與利用成本,創造更多合作機會進行創新應用,因此從法制面、環境面與技術應用層面打造完善的資料共享生態系統(data sharing ecosystem)[3]。   然而依據《個人資料保護法》(Personal Data Protection Act 2012,下稱個資法)第14條以下規定,組織蒐集、處理與利用個人資料應取得當事人同意,除非符合第17條研究目的等例外情形。由於資料共享強調可將資料進行多節點快速傳遞近用,使資料利用價值最大化,因此若依據個資法規定每次共享皆須事前獲得當事人同意,將使近用成本增高並間接造成資料流通產生障礙。因此為因應國家政策與產業需求,新加坡個人資料保護委員會(Personal Data Protection Commission, 下稱個資委員會)依據個資法第62條所賦予的豁免權(exemption),個人或組織可在遵循個資委員會訂定的規則下,依照個案給予組織免除個資法部分規範[4] ,而DSAs機制即是一種[5]。   DSAs是由個資委員會於2018年設立的沙盒(sandbox)計畫,如組織所進行的共享模式是在特定群體並範圍具體明確,同時不會造成個人有負面影響等情事,可在不須經個人同意下進行資料共享[6]。並且,為進一步提升組織與消費者間信任,2019年6月個資委員會與資訊通信媒體發展局(Info-Communication Media Development Authority of Singapore,下稱資通發展局)共同推出「可信任資料共享框架」指南建議,由政府擔任監管角色,組織只要符合指南建議方向,如遵循法律、達到一定資料技術應用品質與實施資安與個資保護措施下,可以進行個人與商業資料之共享,DSAs機制是共享方法之一。以下簡述新加坡個資法規範、指南建議與DSAs機制運作方式。 圖1:資料共享環境建構 資料來源:新加坡資通發展局 一、新加坡個人資料保護法規範   在沒有個資法第17條所列之例外情形下,依據第14條以下規定,組織如近用個人資料應獲得個人同意,同時應符合目的使用及通知義務,尤其應給予個人可隨時撤回同意之權利[7]。   同時組織應根據個人要求,提供近用個人資料之方法、範圍與內容,以及更正錯誤資料權利[8]。並且組織必須任命資料保護官(Data Protection Officer, DPO)隨時向大眾提供通暢的個資聯絡管道,來確保個資透明性與完整性[9]。   在資料保護措施上應有合理安全的資安防護技術,以保障資料不被未經授權近用的風險。當使用目的不在時,需妥善保留或予以去識別化,同時如須境外轉移資料時,境外之資料保護措施應至少與新加坡個資法規範標準相同[10]。 二、免除同意之DSAs機制   DSAs機制是由個資委員會於2018年設立的沙盒(sandbox)計畫,也就是組織可透過申請免除資料共享前必須獲得個人同意之規範。然而如組織擬向個資委員會申請DSAs機制,必須符合三個條件[11]: 共享範圍需在特定群體、期間與組織內:即只限定在具體特定的應用情境內,若超出申請範圍,例如分享至其他非申請範圍的組織,則須再經過個資委員會批准[12]。 近用目的需具體明確:即資料共享必須應用於特定且明確目的,如以「社會研究目的」作為申請則範圍過大不夠明確[13]。 近用資料對於個人不會有不利影響,或公共利益大於個人利益:例如共享目的不是直接用於銷售或存在合法利益,或是共享本身具備公共利益且明顯大於個人可預見的(foreseeable)不利影響,此時個資委員會可考慮同意組織申請免除[14]。 三、建立以信任為基礎之資料共享模式   雖然取得DSAs機制免除同意可以使資料近用方式更為簡便,然而在進行資料共享前,仍應有完善的技術品質與資安保護措施,因此在「可信任資料共享框架」指南建議中,組織應透過法律遵循、導入AI或區塊鏈等新興技術,並具備相應資安保護措施來建構可信任的資料共享環境,實際步驟可分為以下四階段[15]: 圖2:可信任資料框架 資料來源:新加坡資通發展局   第一階段為「資料共享建構」[16],由組織自行評估存有的商業或個人資料是否具共享價值與潛在利益,並要如何進行共享,例如資料共享方式屬於雙邊(bilateral)、多邊(multilateral)或是分散式(decentralized,又稱「去中心化」)。以及資料種類有哪些,如主資料(master data)、交易資料、元資料(metadata)、非結構化資料(unstructured data)等。組織可將資料共享方式、種類依據無形資產(intangible asset)評價方式,即市場法(market approach)、成本法(cost approach)與收入法(income approach)三種評價方法進行評價,來衡量共享之價值性。除資料價值判斷外,組織必須自行評估自身組織與將來之合作夥伴是否有足夠能力管控共享之資料,包括是否具備一定技術能力的資安與資料保護措施等。   第二階段為「法律規範考量」[17],即決定哪些資料可以進行共享,從規範面檢視個資法、競爭法與銀行法等是否有例外不得共享規定,例如信用卡號碼或個人生物識別資訊不得共享。若資料共享類型不會對個人造成不利影響或具備公共利益,並有通知(notification)個人給予選擇退出(opt-out)的機會,組織可依個案申請DSAs機制之豁免。同時另外鼓勵組織向IMDA申請資料保護信任標章(Data Protection Trustmark, DPTM)認證,透過認證機制使消費者更能信任組織運用其個人資料[18]。   第三階段為「技術組織考量」[19],包含組織是否有能力建立資安風險管理與個資侵害之因應措施,是否有即時將資料安全備份技術,並針對不同傳輸技術如有線/無線網路、遠端存取(VPN)、應用程式介面(API)、區塊鏈等區分不同資安防護與風險管理能力。   最後一階段為「資料共享操作」,當已準備進行資料共享時,需再次檢視是否已符合前三個階段,包含透明性、責任義務、法律遵循、近用資料方式與取得目的外利用同意等[20]。 參、事件評析   個人資料視為21世紀驅動創新的重要價值,我國部會亦開始討論「個資資產化」的可能[21]。面對數位經濟時代來臨,有效運用數位科技將潛藏個人資料的大數據進行加值利用,不僅有利組織與創新發展,更可回饋消費者享有更好的產品與服務。   新加坡政府以資料共享作為數位經濟發展重點方向之一,在具備一定程度技術能力、資安保護措施與組織控管之條件下,可向主管機關申請免除個人同意之規範。透過一定法規鬆綁讓資料利用最大化以創造產業創新價值,同時依據主管機關要求的保護措施,使消費者信賴個人資料不會遭受不當利用或侵害。DSAs機制與「可信任資料共享框架」指南之建立,適時調適個人資料保護規範與資料應用間的衝突,並提供組織進行資料共享之依循建議,作為推動該國數位經濟發展方針之一。 [1]組織(organisation)依據新加坡個人資料保護法(Personal Data Protection Act 2012)第2條泛指個人、公司、協會、法人或團體。 [2]INFOCOMM MEDIA DEVELOPMENT AUTHORITY 【IMDA】, Trusted data sharing framework (2019), at 7, https://www.imda.gov.sg/-/media/Imda/Files/Programme/AI-Data-Innovation/Trusted-Data-Sharing-Framework.pdf (last visited Sep. 11, 2019). [3]id. [4]Personal Data Protection Act 2012 (No. 26 of 2012) §62, “The Commission may, with the approval of the Minister, by order published in the Gazette, exempt any person or organisation or any class of persons or organisations from all or any of the provisions of this Act, subject to such terms or conditions as may be specified in the order.” [5]Data Sharing Arrangements, PDPC, https://www.pdpc.gov.sg/Overview-of-PDPA/The-Legislation/Exemption-Requests/Data-Sharing-Arrangements (last visited Dec. 1, 2019). [6]id. [7]IMDA, supra note 2, at 31; Personal Data Protection Act 2012 (No. 26 of 2012) §14, 16, 20. [8]id. Personal Data Protection Act 2012 (No. 26 of 2012) §21. [9]IMDA, supra note 2, at 31. [10]id. at 32. Personal Data Protection Act 2012 (No. 26 of 2012) §24-26. [11]id. [12]PERSONAL DATA PROTECTION COMMISSION【PDPC】, Guide to Data Sharing (2018), at 14, https://www.pdpc.gov.sg/-/media/Files/PDPC/PDF-Files/Other-Guides/Guide-to-Data-Sharing-revised-26-Feb-2018.pdf (last revised Oct. 3, 2019). [13]id. [14]id. [15]PDPC, supra note 4. at 28. [16]id. at 21, 23-25. [17]id. at 35 [18]id. at 30. Data Protection Trustmark Certification, IMDA, https://www.imda.gov.sg/programme-listing/data-protection-trustmark-certification (last visited Sep. 26, 2019). [19]id. at 41-47. [20]id. at 50-51. [21]林于蘅,〈自己的個資自己賣!國發會擬推「個資資產化」〉,聯合新聞網,2019/06/17,https://udn.com/news/story/7238/3877400 (最後瀏覽日:2019/10/1)。

TOP