歐盟「Enforcement-Ricgtlinie 2004/48/EG指令」於德國國內法,而採取所謂「條款立法Artikelgesetz」之綜合立法方式*,包括「專利法」、「商標法」、「實用新型專利法」、「半導體保護法」、「外觀設計專利法」、「品種保護法」、「非訟事件費用法」以及「著作權法」等相關條文之修正。
其中涉及「著作權法」相關重要修正條文包括「他人資訊提供請求權」,主要是賦予著作權人在主張權利侵害時,得向ISP業者要求提供可以辨明侵權者之身分資料(§101 UrhG),惟須符合特定條件,例如,侵權者須有營業行為(in geweblichem Ausmaß)。然而,就何謂「營業行為」在立法過程中爭議迭起,最後達成協議,決定認定「營業行為」之判斷標準包括:上傳、下載或公開傳輸檔案的數量、電影影片是否為全片供下載、錄音專輯是否整張專輯均提供下載等。簡言之,判斷標準將交由司法單位自被下載檔案的「量」與「質」加以衡量。
不同於歐盟Enforcement-Ricgtlinie指令,新修正之著作權法規定在侵害利益輕微案件中,權利人得向侵權人主張存證信函相關費用之上限為100歐元(§97a UrhG),此規定目的在預防權利人相關費用的主張權利遭致濫用。惟於立法過程中遭權利人及律師代表極力反對,認為如權利人堅持捍衛其權利,則超過100歐元之費用部分需由權利人自行吸收,顯不公平。
在著作權保障意識高漲的現代,有關著作權侵害判斷標準以及賠償方式爭議不斷,德國著作權法亦在相關壓力下持續修正著作權法相關條文,擴大對著作權人之保護。這一波修正條文於8月1日正式施行後成效如何,值得後續觀察。
* 主要是將原本散落在不同法律規範中之條文,以組成「條款」的方式將修正的條文。立法過程完成後,該法的 「架構」是由各個「條款」所組成,而每個條款是代表一個(遭到修正之)法律條文。
日本首相官邸之「日本經濟再生本部」於2016年5月19日召開第27次「產業競爭力會議」,並於該會議上提出「日本再興戰略2016(草案)」進行討論。再興戰略以實現「第四次工業革命」為主軸,透過活用IoT、巨量資料、人工智慧(AI)、機器人等技術,目標在2020年創造出30兆日圓的市場附加價值。為了推動相關政策,今年夏天將會成立具備統整指揮機能之「第四次工業革命官民會議」,該會議下並設置「人工智慧技術戰略會議」、「第四次工業革命 人才育成推動會議(暫定名稱)」,以及「機器人革命實現會議」。 「日本再興戰略2016(草案)」,特別對於製造業相關之議題提出討論。再興戰略指出,日本相較他國,雖然在網路空間的「虛擬資料(バーチャルデータ)」平台方面發展較晚,然而在健康資料、交通資料、工廠設備運轉等「即時資料(リアルデータ)」領域有潛在的優勢,因此為了讓日本的企業超越目前的框架,將以建構取得「即時資料」之平台為目標。綜整「日本再興戰略2016(草案)」具體重要政策方面如述,包括: (1)日本政府認為,第四次工業革命普及的關鍵,在於根據中小企業的現場需求,導入IT及機器人等技術,因此將請機器人專家支援,在兩年內將技術導入1萬家以上的企業。 (2)人工智慧的研發係屬第四次工業革命的基礎技術,因此要建構提供AI軟體模組工具,以及推動標準化的完善環境,並於今年內提出研發及產業化的具體施政內容,並留意開發人工智慧的透明性、控制可能性等原則及國際動向。 (3)關於產業活用區塊鏈技術(Block chain)、整備制度促進資料流通等議題,預計於今年秋天提出對應方針。 (4)於「機器人革命倡議協議會」檢討製造業之商業模式改革、與德國共同提案國際標準化及先進案例。 (5)於2020年以前,運用傳感器蒐集資料,創造50件以上,工廠和總公司間,企業和企業間等超越組織框架的先進案例,並提出國際標準。 (6)進行智慧工廠實證,建構具備AI技術的自動化模組以及智慧的產業保全。此外,為超越既有企業間的框架,將於機器設備進行資料共有及活用的實證,並根據實證結果修正相關制度。 (7)整備促進資料利用的環境,特別著重能夠蒐集、分析的資料平台,形成健全的資料流通市場。因此,為釐清彼此的權利義務關係,今年內個人資料保護委員會將提出相關交易指針。 (8)強化智財紛爭處理系統,將徵詢產業界的意見,於今年提出法制改革的結論。 (9)強化中小企業的智財戰略以及必要審查體制,協助其申請及活用專利權,預計明年度開始擴大支援業務,負責機關為獨立行政法人工業所有權資料‧研修館(INPIT)。
日本與歐盟間個人資料之國際傳輸歐盟委員會(European Commission)原則上禁止將歐盟境內的個人資料傳輸至境外,只有經歐盟委員會認定其個人資料保護機制達到歐盟認可標準的國家或地區例外,例如:瑞士、加拿大、以色列等。而日本未能進入前揭國家之列的主要原因,係日本之個人資料保護法未將政府部門納入規範對象。但是基於經濟全球化的需求,日本與歐盟自2017年第一季開始加速進行雙邊合意協商。 日本個人資料保護委員會公布,於2017年5月修正施行的個人資料保護法,已符合歐盟資料保護規則中准許進行境外傳輸的標準。其中包括以獨立的個人資料保護機關來確保必要的保全機制能確實執行等五點(新設立個人資料保護委員會、個人資料定義的明確化、個人料去識別化、非法販賣個人資料之處罰、其他)。 歐盟對此表示,雙邊對於個人資料保護之標準的差異性已經漸漸縮小,利於日本與歐盟間個人資料國際傳輸的環境也已經逐漸形成。目前於歐盟境內設立子公司或是設立法人的日本企業,預期2018年即能自由就歐盟境內雇員或顧客的個人資料,進行日本與歐盟間的國際傳輸。 由於歐盟關於個人資料之保護,為歐洲聯盟基本權利憲章(Charter of Fundamental Rights of the European Union)所明定,企業若非法進行個人資料境外傳輸,會被處以高額罰金,金額約相當於該企業一年內全球營業額總額的4%或2000萬歐元,兩者取其高者為上限;股東甚至也可能面臨被提起訴訟的風險。日本此次修法,對日本在歐盟境內的企業經營將帶來莫大的裨益。
美國醫療保健領域對新興資料儲存系統理論「資料湖泊」(Data Lake)的應用在現今資訊流通快速蓬勃發展的時代,巨量資料(Big Data)帶來效率與生產力等龐大效益已無庸置疑。相較於將資料以「資料倉儲」(Data Warehouse)模式儲存,「資料湖泊」(Data Lake)被廣泛視為巨量資料快速演進的下一步。 美國的醫療保健領域為因應巨量資料發展並提升醫療保健系統的透明度與有責性,美國醫療保險與補助中心(Centers for Medicare & Medicaid Services, CMS)於2013年底建立CMS虛擬研究資料中心(Virtual Research Data Center, VRDC),讓研究員能夠以安全有效率的方式取得並分析CMS的龐大醫療保健資料。此種資料倉儲模式會對進入的資料預先分類,並整合為特定形式以指導後續分析的方式。缺點在於為讓資料更易於分享,會進行「資料清理」(data cleaning)以檢測及刪除不正確資訊並將其轉換成機器可讀取格式,各資料版本會被強制整合為特別形式,但資料清理和轉換的過程會導致明顯的數據流失,對研究產生不利的限制。有鑑於此,為更有效益的應用巨量資料,Pentaho首席技術官James Dixon提出新的資料儲存理論—資料湖泊(Data Lake),此概念於2011年7月21日首先被討論於美國《富士比》雜誌中,目前在英美國家公部門和民間企業間已被熱烈討論。 與Data Warehouse最大不同在於Data Lake可包含「未被清理的資料」(unclean data),保持其最原始的形式。故使用者可取得最原始模式的資料,減少資源上處理數據的必要,讓來自全國各政府機關的資料來源更易於結合。Data Lake主要有四點特性:1.以低成本保存巨量資料(Size and low cost)2.維持資料高度真實性(Fidelity)3.資料易取得(Ease of accessibility)4.資料分析富彈性(Flexible)。儲存超過百萬筆病患資料的加州大學歐文分校醫療中心(UC Irvine Medical Center)即以Hadoop架構為技術建立了一個Data Lake,該中心能以最原始的形式儲存各種不同的紀錄數據直到日後需要被分析之時,可協助維持資料的來源與真實性,並得以不同形式的醫療數據進行分析項目,例如患者再住院可能性的預測分析。 但相對的Data Lake在安全性和檢視權限上也有一定的風險,尤其是醫療保健領域,因為這意味著病患的資料在個資生命週期裡隨時可被取得,因此資訊的取得應被嚴密控制以維持各層級的安全與保障,在建立安全的Data Lake之前,必須審慎考慮誰有資訊檢視權限以及透過什麼媒介取得Data Lake中的資料等問題。