歐盟議會要求禁止將複製動物作為食品

  伴隨著歐洲食品安全局公開一項經高度謹慎評估關於複製動物在食品安全、動物健康和環境等方面關聯性之科學意見後;歐洲議會隨即於2008年9月3日邀集委員會召開討論會議,並於該會議中遞交出有關於禁止將複製動物作為食品之建議案。透過表決,在622票贊成、25票棄權與32票反對之壓倒性決議下,議會通過了該項建議案。

 

  該項禁令建議案要求歐盟境內各會員國應禁止:(1)以複製動物作為食物之來源、(2)為糧食供應目的而進行畜養之複製動物或其繁殖之子代、(3)於市場上販售經由複製動物或其經繁殖之子代所衍生之食用肉品與乳製品;以及(4)禁止以食用為目的自境外進口複製動物與其經繁殖之子代(包括精子或卵子細胞)等行為。

 

  而EFSA也發現:「不太可能達成全面性食品安全之評估工作」,故對於缺乏可靠數據資料而需進行評估之主體而言,在進行風險評估時,其仍將會不斷地被不確定性問題所困擾;同時,EFSA在該報告中還強調:透過比對複製動物與經傳統育種繁衍之動物後,其也將面臨「於動物健康及福利方面等重要爭議問題」。另外,歐洲議會成員指出:將透過歐盟農場動物保護指令中,有關禁止任何可能引起痛苦或傷害之自然或人為育種繁殖過程之規定,作為該項禁令之法律授權依據。

 

  截至目前為止,尚未有任何由複製動物所衍生之產品在歐洲或者世界其它地方被銷售;不過,由於美國食品藥物管理局(FDA)早在2008(今)年1月份時即做出結論,認為:由複製牛、豬、山羊與其子代所產生之肉品與牛奶,其安全性與食用從傳統育種動物所衍生之食品並無二致。因此,專家們咸信,此類產品將會於2010年時正式進入市場販售;而在歐洲方面則更進一步認為,日後在處理複製動物食用之問題上,應要兼顧到動物福利之保護與獲得廣大消費者之信賴。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 歐盟議會要求禁止將複製動物作為食品, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=2912&no=67&tp=1 (最後瀏覽日:2026/02/20)
引註此篇文章
你可能還會想看
英國提出因應GDPR自動化決策與資料剖析規定之細部指導文件

  2018年5月,英國資訊專員辦公室(Information Commissioner’s Office, ICO)針對歐盟GDPR有關資料自動化決策與資料剖析之規定,公布了細部指導文件(detailed guidance on automated decision-making and profiling),供企業、組織參考。   在人工智慧與大數據分析潮流下,越來越多企業、組織透過完全自動化方式,廣泛蒐集個人資料並進行剖析,預測個人偏好或做出決策,使個人難以察覺或期待。為確保個人權利和自由,GDPR第22條規定資料當事人應有權免受會產生法律或相類重大效果的單純自動化處理決策(a decision based solely on automated processing)之影響,包括對個人的資料剖析(profiling),僅得於三種例外情況下進行單純自動化決策: 為簽訂或履行契約所必要; 歐盟或會員國法律所授權; 基於個人明示同意。   英國2018年新通過之資料保護法(Data Protection Act 2018)亦配合GDPR第22條規定,制定相應國內規範,改變1998年資料保護法原則上容許資料自動化決策而僅於重大影響時通知當事人之規定。   根據指導文件,企業、組織為因應GDPR而需特別留意或做出改變的事項有: 記錄資料處理活動,以幫助確認資料處理是否符合GDPR第22(1)條單純自動化決策之定義。 倘資料處理涉及資料剖析或重大自動化決策,應進行資料保護影響評估(Data Protection Impact Assessment, DPIA),判斷是否有GDPR第22條之適用,並及早了解相關風險以便因應處理。 提供給資料當事人的隱私權資訊(privacy information),必須包含自動化決策之資訊。 應確保組織有相關程序能接受資料當事人的申訴或異議,並有獨立審查機制。   指導文件並解釋所謂「單純自動化決策」、「資料剖析」、「有法律效果或相類重大影響」之意義,另就可進行單純自動化決策的三種例外情況簡單舉例。此外,縱使符合例外情況得進行單純自動化決策,資料控制者(data controller)仍必須提供重要資訊(meaningful information)給資料當事人,包括使用個人資料與自動化決策邏輯上的關聯性、對資料當事人可能產生的結果。指導文件亦針對如何向資料當事人解釋自動化決策處理及提供資訊較佳的方式舉例說明。

美國放棄建立全國性免費無線寬頻網路計畫

  四年前,由M2Z網路公司(m2znetworks)向FCC建議,以AWS頻段(1.9GHz~2.1GHz建立)建立高速寬頻網路,並將運用其中一部份,建立速率達768Kbps的網路服務,在十年的期間內,免費提供公眾使用。M2Z計畫與美國各地申請BTOP(Broadband Technology Opportunities Program,寬頻技術機會計畫)補助的地方政府合作,建立免費無線寬頻服務。後續營運的支出將以廣告、與合作伙伴的收益及自有資金支應,並將支付收益的5%給美國財政部。   在經歷諸多考量後,2010年9月,FCC認為這並非一個好的政策措施,並向M2Z公司表示,將不支持這項計畫,而將繼續透過全國寬頻計畫以及普及服務基金的運作,促使寬頻網路普及化。   當M2Z提出這項計畫時,引起非常多的爭論,因其計畫初期提出將建立過濾色情內容的機制,使其成為家庭友善的服務。之後,包括頻譜使用的干擾以及768Kbps的免費網路是否符合需求,也引起其他網路服務商的反對,。而FCC所公布之國家寬頻計畫,其基礎目標是4Mbps之寬頻接取,因此M2Z的計畫顯然已經不合乎FCC的整體規劃。   消息公開之後,許多無線產業紛紛認同FCC的看法,如反對本項計畫最力的CITA無線協會即發表聲明表示,FCC放棄這項構想是正確的決定,因為M2Z的計畫將不能充分發揮AWS頻段的價值,同時提供的服務速度也太緩慢不符合公眾利益。FCC應回歸國家寬頻計畫,合理的規劃整體頻譜資源,釋出更多頻譜提供無線寬頻市場新的機會。

合成資料(synthetic data)

  「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。   在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。   英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。   技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。

歐盟網路中立性議題發展—2009~2013年兩次電子通訊管制法律改革之觀察

TOP