近年來,奈米科技已多方使用於食品製造業中,舉凡食品的殺菌、保存或食材的包裝等,皆為適例。然而,隨著奈米科技的影響層面逐漸擴大,無論係其功用的研發或風險的防範,仍有進一步研究之必要。
歐盟執委會(European Commission)根據2007年3月其新興健康風險科學委員會(SCENIHR)所提出之報告,認為應加強認識奈米科技對於食品安全之影響,遂邀請歐洲食品安全局(EFSA)就該領域提出科學看法。至2008年10月14日,歐洲食品安全局科學委員會即公布「奈米科技對於食品和飼料所引起之潛在風險(Potential Risks Arising from Nanoscience and Nanotechnology on Food and Feed Safety)」草擬意見,其內容係說明奈米科技應用於食品製造業之多種樣態、人為奈米材料(engineered nano materials,ENM)於食品或飼料製造過程中所產生之作用,以及判斷現有之風險評估方式能否合於需要。
該草擬意見歸結數項結論如下:
(1) 因人為奈米材料之體積微小且具有高表面積,於人體吸收時較一般物質更容易產生反應。
(2) 關於化學物質於奈米尺寸下將產生何種變化,迄今無法做出令人滿意之科學論斷,因此就安全性與相關數據的累積,仍需要個別檢視。
(3) 建議應針對風險評估一事設置國際基準,且該基準可同時適用於人為奈米材料及一般化學物質。
(4) 食品與飼料中含有人為奈米材料者,於風險評估時應包括該材料特性之敘述,並進行毒理研究分析,使資訊蒐集更為完備。
由於人為奈米材料不確定之事項甚多,因此需要更豐富的資料加以釐清;而該草擬意見除提供歐盟執委會評估現行法制、研究可行措施外,亦向公眾廣徵回應;民眾可於2008年12月1日前,提供歐洲食品安全局相關科學證據或意見,待該局進行彙整後,將與歐盟會員國商討後續事宜。
美國聯邦法官裁決AI「訓練」行為可主張合理使用 資訊工業策進會科技法律研究所 2025年07月07日 確立我國資料創新利用的法制基礎,建構資料開放、共享和再利用的各項機制,滿足民間及政府取得高品質、可信任且易於利用資料的需求,以資料提升我國數位發展的價值,並強化民眾權利的保障,我國於2025年6月16日預告「促進資料創新利用發展條例」,擬推動資料基礎建設,促進更多資料的釋出。 AI發展領先國際的美國,近日首次有聯邦法院對AI訓練資料表達肯定合理使用看法,引發各界關注[1]。我國已開始著力於AI發展所需的資料流通與有效利用,該判決將有助於啟示我國個人資料、著作資料合法使用之法制因應研析。 壹、事件摘要 2025年6月23日美國加州北區聯邦地方法院(United States District Court for the Northern District of California),威廉·阿爾斯法官(Judge William Alsup)針對Andrea Bartz、Charles Graeber、Kirk Wallace Johnson這三位美國作家,對Anthropic公司訓練大型語言模型(Large Language Model, LLM)時使用受其等著作權保護書籍一案,作出指標性的簡易裁決(summary judgment)[2]。 此案被告掃描所購買的實體書籍,以及從盜版網站複製取得的受著作權保護的書籍,儲存在其數位化、可搜尋的檔案中,用來訓練其正在開發的各種大型語言模型。原告主張被當開發Claude AI模型,未經授權使用大量書籍作為訓練資料的行為,為「大規模未經授權利用」。法院則以四要素分析架構,支持合理使用抗辯(Fair Use Defense),強調AI訓練屬於技術發展過程中不可或缺的資料利用,AI公司於模型訓練階段使用著作權書籍,屬於「合理使用」(Fair Use),且具「高度轉化性」(Highly Transformative),包括將購買的實體圖書數位化,但不包括使用盜版,也不及於建立一個永久性的、通用目的的「圖書館(library)」(指訓練資料集)。 貳、重點說明 依美國著作權法第107條(17 U.S.C. § 107)規定,合理使用需綜合考量四要素,法官於本案中認為: 一、使用的目的與性質—形成能力具高度轉化性 AI模型訓練的本質在於學習語言結構、語意邏輯,而非單純複製或重現原著作。AI訓練過程將大量內容作為輸入,經由演算法解析、抽象化、向量化,最終形成轉個彎創造出不同的東西 (turn a hard corner and create something different) 的能力,屬於一種「學習」與「再創造」過程。AI訓練的目的並非為了重現原著作內容,而是為了讓模型具備生成新內容的能力。這種「轉化性」(transformative use)極高,與單純複製或替代原著作的行為有明顯區隔[3]。 另外訓練過程對資料做格式變更本身並未增加新的副本,簡化儲存並實現可搜尋性 (eased storage and enabled searchability),非為侵犯著作權人合法權益目的而進行,亦具有轉化性 (transformative)。原告就所購買的紙本圖書,有權按其認為合適的方式「處置 (dispose)」,將這些副本保存在其資料集中,用於所有一般用途[4]。 二、受保護作品的性質--高度創作性非關鍵因素 法院認同原告所主張的書籍是具有高度創意(creative)的作品理應享有較強的保護。但法院亦認為合理使用的四個要素,須為整體衡量,儘管作品本身具有較高的創意性,但由於使用行為的高度轉化性以及未向公眾直接重製原作表達,整體而言,法院認定用於訓練 LLM 的行為構成合理使用[5]。 三、使用的數量與實質性--巨大數量係轉化所必要 法院認為AI模型訓練需大量內容資料,甚至必須「全書」輸入,看似「大量使用」,但這正是AI技術本質所需。AI訓練是將內容進行抽象化、數據化處理,最終在生成新內容時,並不會原封不動重現原作。所以,雖然訓練過程涉及全部作品,但AI模型的輸出並不會重現原作的具體表達,這與單純複製、重製作品的行為有本質區別[6]。 四、對潛在市場或價值的影響 本案法院明確指出,人工智慧模型(特別是原告的Claude服務)的輸出內容,通常為全新生成內容,並非原作的精確重現或實質模仿冒,而且Claude服務在大型語言模型(LLM)與用戶之間加入額外功能,以確保沒有侵權輸出提供予用戶。因此,此類生成內容不構成對原作的替代,不會削弱原作的銷售市場,也不會造成市場混淆,而且著作權法保護的是原創而非保護作者免於競爭[7]。 不過即便法院支持被告的合理使用主張,肯定AI訓練與著作權法「鼓勵創作、促進知識流通」的立法目的相符。但仍然指出提供AI訓練的合理使用(Fair Use)不代表資料來源的適法性(Legality of Source)獲得合法認定。沒有任何判決支持或要求,盜版一本本來可以在書店購買的書籍對於撰寫書評、研究書中的事實或創建大型語言模型 (LLM) 是合理必要 (reasonably necessary) 的。此類對原本可(合法)取得的圖書進行盜版的行為,即使用於轉化性使用並立即丟棄,「本質上」、「無可救藥地」(inherently、irredeemably)構成侵害[8]。 參、事件評析 一、可能影響我國未來司法判決與行政函釋 我國於現行著作權法第65條規定下,須於個案交予我國法院認定合理使用主張是否能成立。本案判決為美國首個AI訓練行為可主張合理使用的法院見解,對於我國法院未來就對AI訓練資料取得的合法使用看法,顯見將會產生關鍵性影響。而且,先前美國著作權局之報告認為AI訓練過程中,使用受著作權保護作品可能具有轉化性,但利用結果(訓練出生成式AI)亦有可能影響市場競爭,對合理使用之認定較為嚴格,而此裁定並未採取相同的見解。 二、搜取網路供AI訓練資料的合理使用看法仍有疑慮 依據本會科法所創智中心對於美國著作權法制的觀察,目前美國各地法院中有多件相關案件正在進行審理,而且美國著作權局的合理使用立場較偏向有利於著作權利人[9]。相同的是,均不認同自盜版網站取得的資料可以主張合理使用。然而AI訓練所需資料,除來自於既有資料庫,亦多來自網路搜取,如其亦不在可主張範圍,那麼AI訓練的另一重要資料來源可能會受影響,後續仍須持續觀察其他案件判決結果。 三、有效率的資料授權利用機制仍是關鍵 前揭美國著作權局報告認為授權制度能同時促進產業發展並保護著作權,產業界正透過自願性授權解決作品訓練之方法,雖該制度於AI訓練上亦尚未為一完善制度。該裁決也指出,可合理使用資料於訓練AI,並不代表盜版取得訓練資料可以主張合理使用。這對於AI開發而言,仍是須要面對的議題。我國若要發展主權AI, 推動分散串接資料庫、建立權利人誘因機制,簡化資料查找與授權流程,讓AI訓練資料取得更具效率與合法性,才能根本打造台灣主權AI發展的永續基礎。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]相關新聞、評論資訊,可參見:Bloomberg Law, "Anthropic’s AI Book-Training Deemed Fair Use by US Judge", https://news.bloomberglaw.com/ip-law/ai-training-is-fair-use-judge-rules-in-anthropic-copyright-suit-38;Anthropic wins a major fair use victory for AI — but it’s still in trouble for stealing books, https://www.theverge.com/news/692015/anthropic-wins-a-major-fair-use-victory-for-ai-but-its-still-in-trouble-for-stealing-books;Anthropic Scores a Landmark AI Copyright Win—but Will Face Trial Over Piracy Claims, https://www.wired.com/story/anthropic-ai-copyright-fair-use-piracy-ruling/;Anthropic Wins Fair Use Ruling In Authors' AI Copyright Suit, https://www.thehindu.com/sci-tech/technology/anthropic-wins-key-ruling-on-ai-in-authors-copyright-lawsuit/article69734375.ece., (最後閱覽日:2025/06/25) [2]Bartz et al. v. Anthropic PBC, No. 3:24-cv-05417-WHA, Doc. 231, (N.D. Cal. June 23, 2025),https://cdn.arstechnica.net/wp-content/uploads/2025/06/Bartz-v-Anthropic-Order-on-Fair-Use-6-23-25.pdf。(最後閱覽日:2025/06/25) [3]Id. at 12-14. [4]Id. at 14-18. [5]Id. at 30-31. [6]Id. at 25-26. [7]Id. at 28. [8]Id. at 18-19. [9]劉家儀,美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?https://stli.iii.org.tw/article-detail.aspx?no=0&tp=1&d=9352。
歐盟生醫研究積極籌組歐盟研究基礎設施聯盟(ERIC)歐盟自2009年6月通過並於同年8月生效之「第723/2009號歐盟研究基礎設施聯盟法律架構規則」(COUNCIL REGULATION (EC) No 723/2009 of 25 June 2009 on the Community legal framework for a European Research Infrastructure Consortium (ERIC),簡稱第723/2009號規則),其乃希望能促進各會員國間各自分散的研究基礎設施(Research Infrastructures,簡稱RIs)之資源凝聚及共享,讓原本僅為設施設備的RIs整合起來,透過由3個以上歐盟會員國作為某特定ERIC成員之方式,依第723/2009號規則向歐盟執委會提出ERIC設立申請,經執委會同意後,ERIC即可取得獨立法律地位及法律人格,以自己名義獲得、享有或放棄動產、不動產及智慧財產,以及締結契約及作為訴訟當事人,並得豁免無須被課徵加值稅(value added tax)和貨物稅(excise duty)等稅賦。歐盟創設ERIC法律架構之目的,是希望能透過國際合作、彙集國際資源,在歐盟建立起頂尖研發環境,吸引跨國研發活動集中與進駐,利用規模化的大型研究基礎設施導引出世界級研發。 截至目前,由奧地利、比利時、捷克、德國、荷蘭等國作為成員及瑞士作為觀察員所建立之「歐盟健康、老化及退休調查」(The Survey of Health, Ageing and Retirement in Europe,簡稱SHARE),乃是歐盟首次提出申請且正式設立之ERIC。SHARE-ERIC乃一大型的人口老化多國研究資料庫,並已收錄45,000筆以上年齡50歲以上個人之健康、社經地位及社會家庭網絡之跨領域及跨國籍資料,SHARE-ERIC之資料分析除將有助歐盟國家就老化社會之福利系統為規劃,更預期將成為推動其活動及健康老化歐盟創新伙伴試行計畫之重要基石。 除此之外,自2008年起由歐盟撥款500萬歐元籌備成立之「生物銀行及生物分子資源研究基礎機構」(Biobanking and Biomolecular Resources Research Infrastructure,簡稱BBMRI),從2008年至今(2011)年1月底3年籌備期間,已募得30個以上國家之53個會員聯盟以及280個聯繫組織(大部分為生物銀行),預計將建立成為最大的泛歐生物銀行,病患及歐盟人口之樣本與資料之介面,以及頂尖生醫研究之介面,且為了要BBMRI-ERIC,BBMRI指導委員會業已擬定「BBMRI-ERIC備忘錄」提供予有興趣之會員國家簽署,希望能在今年底前成立BBMRI-ERIC。
歐盟決定開放800MHz供無線寬頻應用歐盟執委會於2010年5月6日公布790-862 MHz頻段(簡稱800MHz)的統一技術規格決定(Commission Decision 2010/267/EU on harmonised technical conditions of use in the 790-862 MHz frequency band for terrestrial systems capable of providing electronic communications services in the European Union)。會員國以為,與其單純保留800MHz給地面廣播系統使用,不如開放該頻段供網路使用,故會員國必須立即根據決定,以一致性的技術規格,讓800MHz頻段可以供無線寬頻接取技術使用。 執委會下一步將對數位紅利的使用提出規劃草案,草案內容並將成為預計於6月底公布的「2011-2015年無線頻譜政策方案」(Radio Spectrum Policy Programme 2011-2015)的一部份。各界預期,該草案有可能包括制訂一個所有會員國都必須釋出800MHz供寬頻服務發展的實施日期。
英國資訊委員辦公室(ICO)進行監理沙盒初步公眾意見徵詢英國資訊委員辦公室(Information Commissioner's Office, ICO)2018年9月就監理沙盒為初步公眾意見徵詢,以瞭解其可行性。ICO監理沙盒之建立係依據英國2018-2021年科技策略(Technology Strategy for 2018-2021),並參考英國金融行為監理總署(Financial Conduct Authority, FCA)已成功發展之沙盒機制。ICO將提供組織於安全可控且不排除資料保護法規適用的環境下,以創新方式應用個資於開發創新產品與服務,並提供關於降低風險與資料保護設計(data protection by design)的專業知識和建議,同時確保組織採取適當安全維護措施。徵詢重點分為六部分: 障礙和挑戰(Barriers and Challenges):歐盟一般資料保護規則(General Data Protection Regulation, GDPR)或英國2018年資料保護法(Data Protection Act 2018, DPA18)之適用,以及ICO之監管方法,是否造成組織以創新方式應用個資於開發創新產品與服務之障礙或挑戰。 適用之可能範圍(Possible scope of an ICO Sandbox) 了解參與益處(Understanding the benefits of involvement) 機制(Sandbox mechanisms):於監理沙盒機制下不同階段提供指導,初期就如何解決資料保護相關問題提供非正式之指導(informal steers);中期提供法律允許與具適當保護措施之監管指導,如對參與者進入沙盒期間內非故意違反資料保護原則之行為,不會立即受到制裁之聲明函(letters of comfort)、確認組織未違反相關資料保護法規等;以及針對新興技術和創新特定領域,提供解決資料保護挑戰之預期指導(anticipatory guidance),如訂定相關行為準則(code of conduct)。 時機(Sandbox timings):包含開放申請進入沙盒時點、進入模式、是否彈性因應產品開發週期、測試階段期間等。 管理需求(Managing Demand):如設定優先進入沙盒領域、類型、設定參與者數量上限等。 該諮詢於10月12日結束,2018年底將公布結果,值得持續追蹤,以瞭解ICO監理沙盒未來之發展。 ICO亦接續於10月建立監管機關業務和隱私創新中心(Regulators’Business and Privacy Innovation Hub),與其他監管機關合作提供資料保護之專業知識,以確保法規與未來的技術同步發展;該中心也將與ICO監理沙盒共同推動,支持組織以不同方式使用個資開發創新產品和服務。