美國基改動物法規研擬中

  基改動物的技術研發腳步雖不如植物快速,不過自1980年出現重大的技術突破後,基改動物的研發成果不斷產出,目前基改動物的研發方向以醫藥用途最多,其次像是環保、食用、抗氣候變遷等,均有相關的研究投入。隨著研發成果的累積,美國也開始構思基改動物的規範議題,2008年9月,美國FDA及APHIS分別就基改動物提出規範細節及資訊調查的公告。

 

  由於美國並未對基改生物訂定管理專法,而是利用既有的法規體系來管理基因改造生物,而既有法規原各有其規範目的,因此如何從這些既有法規的規範目的出發,闡述其用來規範基改動物的適當連結,以及相關主管機關將如何運用既有法規來管理基改動物,便成為研議的重點。

 

  目前FDA內的CVM(Center for Veterinary Medicine)已率先宣告其對基改動物的主管權限,並公告「基因重組動物管理之產業指導原則(草案)」(Draft Guidance for Industry on the Regulation of Genetically Engineered Animals)。FDA認為,由於轉殖進入基改動物體內的重組DNA構體(rDNA construct),已對動物本身的結構與功能(construct and function)產生影響,符合其依聯邦食品藥品及化妝品管理法(Federal Food, Drug, and Cosmetic Act)規定所稱之藥(drug)的定義,因此,FDA宣告其對所有的基改動物(精確來說是轉殖於其體內的重組DNA構體),將視以動物用新藥(new animal drug)管理之,至於基改動物後續可能有不同的用途,則另須符合相關的產品主管法規,始可上市。在APHIS部分,其主要負責動物健康之把關,目前APHIS正對外進行廣泛的資訊蒐集與調查,以作為其後續研擬進一步的管理規則或政策之參考依據。

本文為「經濟部產業技術司科技專案成果」

相關連結
相關附件
※ 美國基改動物法規研擬中, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=2932&no=67&tp=1 (最後瀏覽日:2026/01/11)
引註此篇文章
你可能還會想看
美國商務部國家技術與標準局公布技術創新計畫(TIP)之執行規則草案,徵求外界意見

  過去十餘年來,美國商務部國家技術與標準局(The Commerce Department’s National Institute of Standards and Technology, NIST)推動的「先進技術計畫」(Advanced Technology Program, ATP),成功帶領美國中小企業透過技術的研發投入,創造美國經濟榮景。近年來面對變動劇烈的國際環境,為提升美國競爭力,美國總統於2007年8月9日簽署通過「意涵深遠地促進傑出技術、教育與科學之美國機會創造法」(The America Creating Opportunities To Meaningfully Promote Excellence In Technology, Education, And Science Act, 簡稱The America COMPETES Act)。   The America COMPETES Act特別授權NIST負責推動並執行一項新的研究補助計畫-技術創新計畫(Technology Innovation Program, TIP),企圖藉由在國家重點需求領域(critical national need areas),補助具有高風險性及高報酬的技術研究(high-risk, high-reward research),支持、促進並加速美國的創新。所謂「高風險、高報酬」之技術研究,指具有以下三項特質的技術研究:(1)研究可轉化成具體實益的潛在可行性,其成果將產生深遠及廣泛的影響;(2)研究計畫的進行係為了回應屬NIST技術職掌範圍內的重大國家需求;(3)研究的技術議題過於創新(too novel)或跨越甚多學科(spans too diverse a range of disciplines),以致傳統的專家審查程序無法適當地用來篩選此類計畫。至於「國家重點需求領域」,指問題觸及的面向極大,然須要被克服的社會挑戰(societal challenge)尚無因應之道而有賴國家予以關注,此等問題與社會挑戰可能可以透過高風險、高報酬研究之進行而予以解決者。   根據The America COMPETES Act,TIP將依研究實力競爭(on the basis of merit competitions)的原則,透過分攤成本的研究補助(cost-shared research grants)、合作協議(cooperative agreements)或契約(contracts)等方式,鼓勵業界單獨或共同(透過合資方式)提出技術創新的研究計畫申請以合資方式提出者,其主導者(lead entity)可為中小型企業或高等教育機構。TIP的補助對象限於設立於美國並在美國境內經營其主事務的中小型企業,外國企業參與TIP若符合美國經濟利益者,亦得獲得補助。TIP的補助金額不超過個別研究計畫總成本的半數,且只能用於補助直接成本,間接成本、收益或管理費則不在補助之列。總計對單一單位的補助以最長三年且不超過三百萬美元為限;對於合作研究則以最長五年且不過過九百萬美元為限。由於The America COMPETES Act僅就TIP的補助目的、補助對象、補助條件等作原則性規定,其運作細節仍有待NIST進一步設計,日前NIS已於2008年3月7日對外公布TIP執行規則草案,徵求各界意見。   隨著TIP的規劃與實際運作,過去由NIST所執行的ATP也將完成其歷史性任務,由TIP取代並宣告美國政府支持產業技術研發的新理念-亦即透過支持高風險、高報酬之技術研究,以回應美國的國家重點需求領域。   身為全球創新的龍頭,美國所提出的科技研發創新政策向為各國學習與參考借鏡的標竿,隨著The America COMPETES Act的通過,新法中關於美國產業創新的新機制規劃,已引起其他國家高度關注。印度科技與地球科學(Science & Technology and Earth Sciences)部長在The America COMPETES Act通過的一個月後即宣佈,印度政府將於短期內提出全面性的印度創新法案(Indian Innovation Act),藉以激勵印度的創新,而此項創新法案將會以美國的America COMPETES Act為參考模型。

德、法、盧森堡三國推動跨國境數位測試場域(Digitalen Testfeld))「自動化與聯網駕駛」計畫測試應用

  德國,法國和盧森堡共同推動「數位測試場」:自動化與聯網駕駛之跨國境測試。三國交通部門部長在2017年9月15日法蘭克福國際車展中決定擴大測試場域的範圍。令自動駕駛的測試場域,現在擴及到三國,並進行跨國界的測試。   三方「數位測試場域」推動的目的在於將科技從實驗室帶到跨國境的實地測試。「行動4.0是邁向歐洲單一市場的一個重要里程碑」,德國交通部長希望「自動駕駛領域是由歐洲來主導的市場」。並由德、法與盧森堡共同簽署三邊「數位測試場域」協議。   二月初同意的「數位測試場域」,是德法在2016年9月開始執行的「法德電動與數位方案」計畫跨國界測試自動駕駛的一部分。以共同合作,兩國希望推動電動車和自動駕駛領域的創新。如今又加入第三個國家:盧森堡。   目前,測試場域的選擇,從德國薩蘭邦梅爾茲,經過薩爾路易和薩爾布呂肯,最後到法國梅斯。此次,將盧森堡的貝唐堡設置的測試車道納入成為一個跨越三個國家的車道測試圈。   計畫所進行測試著重以下應用:車間通信(車對車)和與透過LTE/5g等行動通訊信號與基礎設施通訊;自動化和聯網駕駛下的超車、切車、煞車;普及化的智慧交通引導系統與預警服務。   數位測試領域讓工業,研究和政策獲得在實際交通狀況的經驗。研究資金提供對象,聯邦政府將提供約1億歐元給測試領域的研究項目。研究測試補助重點在以下領域:駕駛人和車輛之間的相互作用;交通管理和規劃;聯網與資料管理;社會層面。

金融穩定委員會報告指出金融領域採用AI之模型、資料品質與治理風險

.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。 報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。 在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。 若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。 報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。

簡介人工智慧的智慧財產權保護趨勢

近期人工智慧(Artificial Intelligence, AI)的智慧財產權保護受到各界廣泛注意,而OpenAI於2023年3月所提出有關最新GPT- 4語言模型的技術報告更將此議題推向前所未有之高峰。過去OpenAI願意公布細節,係由於其標榜的是開源精神,但近期的報告卻決定不公布細節(如訓練計算集、訓練方法等),因為其認為開源將使GPT- 4語言模型面臨數據洩露的安全隱患,且尚有保持一定競爭優勢之必要。 若AI產業選擇不採取開源,通常會透過以下三種方式來保護AI創新,包括申請專利、以營業秘密保護,或同時結合兩者。相對於專利,以營業秘密保護AI創新可以使企業保有其技術優勢,因不用公開技術內容,較符合AI產業對於保護AI創新的期待。然而,企業以營業秘密保護AI創新有其限制,包含: 1.競爭者可能輕易透過還原工程了解該產品的營業秘密內容,並搶先申請專利,反過來起訴企業侵害其專利,而面臨訴訟風險; 2.面對競爭者提起的專利侵權訴訟,企業將因為沒有專利而無法提起反訴,或透過交互授權(cross-licensing)來避免訴訟; 3.縱使企業得主張「先使用權(prior user right)」,但其僅適用在競爭者於專利申請前已存在的技術,且未來若改進受先使用權保護之技術,將不再受到先使用權之保護,而有侵犯競爭者專利之虞,因此不利於企業提升其競爭力。 綜上所述,儘管AI產業面有從開源轉向保密的傾向,但若要完全仰賴營業秘密來保護AI創新仍有其侷限,專利依舊是當前各企業對AI領域的保護策略中的關鍵。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

TOP