為確認是否採行歐盟整體生質燃料目標(即於2020年應達20%)而欲進行協商之前夕,歐洲各政黨團體立法成員們間,對於設定環境永續性基準與將用以種植生產生質燃料作物土地等方面之意見,至今仍分歧不一。
鑑於歐洲環保團體紛盼能儘快看見那些未來將被間接利用來生產生質燃料之土地,其可一併被涵括在正式評估公式之內,來評估對整體CO2濃度影響;因此,各會員國遂轉而朝向歐洲執委會,要求其應提出詳細之規則,並希望能在將相關基準納入整體法律架構之前,完成對間接利用土地所產生衝擊之評估方法與標準的建立。
環保團體代表Turmes指出,日前執委會對歐洲議會所提出之建議提案,已表達其意見並且認為:由於對間接利用以生產生質燃料之土地其未來將對CO2排放產生衝擊方面,尚未獲得足夠之科學性證據來做為日後評估之參考;因此,就整體生質燃油利用之最終版本而言,其認為需將「新方法學」(new methodologies)部分一併納入,以填補前述科學性知識之缺口與不足。
另外,各會員國政府對歐洲議會所提出,要求透過未來利用生質燃料來達到減少碳排放目標時,至少應有40%之比例,需透過運用第二代生質燃料來達成之「附屬目標」(sub-targets),亦表示反對。目前各政府代表僅同意25%,而至於剩下之15%,則將留待後續協商時,再進行討論。
最後,Turmes指出,關於前述次要性目標之確定,歐洲議會將待解決間接利用土地問題後,再做更進一步之協商。
本文為「經濟部產業技術司科技專案成果」
加拿大政府由創新、科學和工業部長(Minister of Innovation, Science and Industry)代表,於2022年6月16日提交C-27號草案,內容包括聯邦的私部門隱私權制度更新,以及新訂的《人工智慧資料法案》(Artificial Intelligence and Data Act, 下稱AIDA)。如獲通過,AIDA將是加拿大第一部規範人工智慧系統使用的法規,其內容環繞「在加拿大制定符合國家及國際標準的人工智慧設計、開發與應用要求」及「禁止某些可能對個人或其利益造成嚴重損害的人工智慧操作行為」兩大目的。雖然AIDA的一般性規則相當簡單易懂,但唯有在正式發布這部包含絕大多數應用狀況的法規後,才能實際了解其所造成的影響。 AIDA為人工智慧監管所設立的框架包含以下六項: (1)方法 以類似於歐盟《人工智慧法案》採用的方式,建立適用於人工智慧系統具「高影響力」的應用方式的規範,關注具有較高損害與偏見風險的領域。 (2)適用範圍 AIDA將適用於在國際與省際貿易及商業行動中,設計、發展或提供人工智慧系統使用管道的私部門組織。「人工智慧系統」的定義則涵蓋任何「透過基因演算法、神經網路、機器學習或其他技術,自動或半自動處理與人類活動相關的資料,以產生結果、做出決策、建議或預測」的技術性系統。 (3)一般性義務 I 評估及緩和風險的措施 負責人工智慧系統的人員應評估它是否是一個「高影響系統」(將在後續法規中詳細定義),並制定措施以辨識、評估與減輕使用該系統可能造成的傷害風險或具有偏見的結果。 II 監控 對該「高影響系統」負責的人員應建立準則,以監控風險緩解措施的遵守情況。 III 透明度 提供使用管道或管理「高影響系統」運作的人員應在公開網站上,以清晰的英語揭露 i 系統如何或打算如何使用。 ii 系統所生成果的類型及它所做出的決策、建議與預測。 iii 為辨識、評估與減輕使用該系統可能造成的傷害風險或具有偏見的結果,而制定的緩解措施。 iv 法規明定應揭露的其他訊息。 IV 記錄保存 執行受規範活動的人員應遵守紀錄保存要求。 V 通知 若使用該系統將導致或可能導致重大傷害,「高影響系統」的負責人應通知部門首長。 VI 匿名資料的使用 從事法案所規定的活動及在活動過程中使用或提供匿名資料的人員,必須依據規範制定關於(a)資料被匿名化處理的方式(b)被匿名化資料的使用與管理,兩方面的措施。 (4)部長命令 部門首長可以透過命令要求(a)製作紀錄(b)從事審計或聘請一位獨立的審計師執行(c)成立一個專責執行審計程序的組織(d)成立一個在有理由相信「高影響系統」之使用可能造成急迫重大傷害風險時負責進行終止或准許的組織。 (5)行政管理 AIDA為部門首長制定一項,可指定其所管轄部門中一名高級官員為「人工智慧與資料專員」的權利,其職責在協助部門首長管理與執行AIDA。 (6)罰則 違反AIDA規範之罰則主要為按公司、個人之收入衡量的罰款。特定嚴重狀況如以非法方式取得人工智慧訓練用資料、明知或故意欺騙大眾造成嚴重或心理傷害或財產上重大損失,亦可能判處刑事監禁。
中國大陸國家新聞出版廣電總局重新建構網路服務管理規範 美國通過「開放、公開、電子化與必要的政府資料法」(Open, Public, Electronic, and Necessary Government Data Act)美國於2019年1月通過「開放、公開、電子化與必要的政府資料法」(Open, Public, Electronic, and Necessary Government Data Act),以下簡稱「政府資料公開法」,於2018年12月經參議院、眾議院通過後,2019年1月14日經美國總統川普簽署公布,為具拘束力的聯邦法。 聯邦政府往往擁有大量的寶貴資料,本法旨在要求聯邦政府機關在網路上開放發布其非敏感性資料時,應以機器可讀取的格式為之,使之更容易透過手機或其他電子設備使用(access)。意在擴大對政府資料的使用和管理,及促進私部門的創新,讓其它政府單位、各個組織或每個人都能使用這些資訊,使政府資訊透明化,同時兼顧隱私與國家安全議題。 政府資料公開法的內容係將歐巴馬總統於2013年5月9日簽署生效的「政府資訊應具有開放性和機器可讀性」(Making Open and Machine Readable the New Default for Government Information)之行政命令(Executive Order),正式立為聯邦法,促使數位政府之政策未來以開放為原則、不開放為例外。有論者認為本法原為行政指導性質之行政命令,改以法律位階為之,其原因係為了讓開放政府資料永續發展,以成文法框架拘束政府機關。 因此,該法內容在於修正美國法典第44編第35章「協調聯邦資訊政策」(Coordination of Federal Information Policy)之部分條文,主要重點整理如下: 第3502條中定義了資料資產(data asset)、開放政府資料資產(open Government data asset)、機器可讀性(machine- readable)和開放授權(open license)等。其中,「開放授權」之定義首次見於本法條文中,係指將資料資產開放供公眾近用時,針對該資料資產提供以下法律保障(legal guarantee),包含:允許公眾在毋須支付任何成本即可使用(at no cost to the public),而對於該資料資產的重製、發布、散布、傳播、引用,或改作皆不會受到限制。 聯邦政府向公眾釋出資料集時,除因智慧財產權之規定外,原則上不得加諸任何限制而影響到人民對於該資料的使用或再利用,並應以機器可讀格式(machine-readable)、開放格式(Open Format)、開放標準(Open Standard)的基礎下提供。 要求聯邦政府利用開放資料來強化其決策機制。 要求美國政府審計辦公室(Government Accountability Office, GAO)透過定期監督,來確保聯邦政府的問責制運作(accountability)。意即,GAO應向國會提交一份報告,該報告總結對機關的調查結果和趨勢,並給予其適當建議。(美國政府審計辦公室之角色為國會的監督審計機構,係立法部門的一部份,主要職責為協助、改善聯邦政府所訂的各項計畫及政策,向國會提供客觀、平衡的資訊。) 在第3520條、3520A條中,規範聯邦機構須編制首席資料專員(Chief Data Officers, CDO)及首席資料專員理事會(CDO Council),負責資料治理和執行其職責,並確保該機構遵守本法。
用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).