為確認是否採行歐盟整體生質燃料目標(即於2020年應達20%)而欲進行協商之前夕,歐洲各政黨團體立法成員們間,對於設定環境永續性基準與將用以種植生產生質燃料作物土地等方面之意見,至今仍分歧不一。
鑑於歐洲環保團體紛盼能儘快看見那些未來將被間接利用來生產生質燃料之土地,其可一併被涵括在正式評估公式之內,來評估對整體CO2濃度影響;因此,各會員國遂轉而朝向歐洲執委會,要求其應提出詳細之規則,並希望能在將相關基準納入整體法律架構之前,完成對間接利用土地所產生衝擊之評估方法與標準的建立。
環保團體代表Turmes指出,日前執委會對歐洲議會所提出之建議提案,已表達其意見並且認為:由於對間接利用以生產生質燃料之土地其未來將對CO2排放產生衝擊方面,尚未獲得足夠之科學性證據來做為日後評估之參考;因此,就整體生質燃油利用之最終版本而言,其認為需將「新方法學」(new methodologies)部分一併納入,以填補前述科學性知識之缺口與不足。
另外,各會員國政府對歐洲議會所提出,要求透過未來利用生質燃料來達到減少碳排放目標時,至少應有40%之比例,需透過運用第二代生質燃料來達成之「附屬目標」(sub-targets),亦表示反對。目前各政府代表僅同意25%,而至於剩下之15%,則將留待後續協商時,再進行討論。
最後,Turmes指出,關於前述次要性目標之確定,歐洲議會將待解決間接利用土地問題後,再做更進一步之協商。
本文為「經濟部產業技術司科技專案成果」
一般實務上較熟悉發明或新型專利在申請過程中,調修權利範圍與其後訴訟禁反言之關聯性,然而在設計專利申請過程中,圖式的調修或圖式組合的選取對往後訴訟在權利範圍主張所造成的影響,在實務上則相對不明確。而美國聯邦巡迴上訴法院(the United States Court of Appeals for the Federal Circuit, 簡稱CAFC)在2018年8月1日對「Advantek Mktg., Inc. v. Shanghai Walk-Long Tools Co., Ltd.」一案作出判決,依循了設計專利禁反言之判斷原則,這也是CAFC根據此判斷原則所作出的第二個判決。 Advantek Mktg., Inc.(後稱Advantek)擁有「寵物屋(Gazebo)」美國設計專利(D715,006,後稱系爭專利),其認為Walk-Long Tool Co., Ltd.(後稱Walk-Long)之「有蓋寵物屋」產品(後稱系爭產品)侵權,因此在2016年提出專利侵權訴訟。一審中,Walk-Long指出Advantek在專利審查過程中選擇放棄「附蓋寵物屋」之圖式,是故意放棄專利範圍(intentionally surrendered patent claim scope)以取得專利,而根據禁反言原則認為Advantek申請階段已放棄附蓋之設計態樣因此無法主張權利,地方法院認同Walk-Long。 Advantek提起上訴,CAFC根據其於2014年判決中所提出之設計專利禁反言判斷原則:(1)是否有放棄專利範圍;(2) 該放棄是否以專利性為由而提出;(3)被控侵權產品是否落入該放棄之範圍中,認為系爭產品並不符合第三點,即未落入所放棄之圖式範圍,亦即系爭專利之範圍為寵物屋骨架結構(skeletal structure),不論系爭產品是否有其他特徵(是否附有蓋)皆落入系爭專利之權利範圍;此外,根據2016年最高法院在「Samsung v. Apple」案中針對複數構件之產品認定專利侵權範圍時,是以部分構件而非完整產品進行檢視,亦即系爭產品僅須一部分與系爭專利一致便落入專利範圍,而非以產品整體視之,並據此兩觀點駁回地院判決。 本案重點在於,專利申請過程中審查委員發現一案多實施例的情況提出選取要求(restriction requirement),當申請人選取部分圖式為產品之核心設計形成較大的專利範圍(如本案選擇的寵物屋骨架結構),並不會造成禁反言,當禁反言在調修或選取時限縮專利範圍才會成立。此外,建議設計專利之申請範圍係以核心設計或主要設計特徵而非納入產品之整體設計,如此未來主張權利範圍將相對寬廣。 「本文同步刊登於TIPS網站(https://www.tips.org.tw)」
歐盟執委會提出資料治理與資料政策歐盟執委會提出資料治理與資料政策 資訊工業策進會科技法律研究所 2020年10月12日 歐盟執委會(European Commission,以下簡稱執委會)於2020年7月提出「資料治理與資料政策」(Data Governance and Data Policies at the European Commission)[1],旨在說明歐盟執委會將如何透過資料治理及相關政策,轉型為資料驅動型組織(data-driven organization),並提供一致的方向或原則,促進執委會下各政務總署(Directorate-General)及事務部門(Service Department)(以下簡稱相關部門機構)之資料共享。 壹、背景目的 「促成歐洲適應數位時代,並使執委會成為完全數位化、具敏捷性、靈活性與透明性的歐盟組織」是執委會現任主席Ursula von der Leyen所提出的2019年至2024年政策願景之一[2]。隨著數位化發展,透明(transparent)、循證式(evidence-based)的決策需運用人工智慧資料分析技術,「資料」是直接影響人工智慧運用於政策決定的關鍵要素。欲提升人工智慧運用結果被信賴的程度,首先必須有可查找(findable)、可近用(accessible)、可互通(interoperable)、安全(secure)且高品質(high-quality)的資料。歐盟機構內部資料、資訊與知識的共享與治理,有助於此願景之達成。 因此,執委會提出「資料治理與資料政策」,建立執委會統一的資料治理架構與政策原則,幫助執委會轄下相關部門機構共同遵循資料管理(data management)、資料近用、資料保護、智慧財產權、資訊安全等相關法律與監理要求。同時,執委會亦期能藉此優化資料建立(creation)、蒐集(collection)、取得(acquisition)、存取(access)、利用(use)、處理(processing)、共享(sharing)、保存(preservation)與刪除(deletion)等資料生命週期必經流程,改善資料品質,提升資料管理及共享之效率。 貳、內容摘要 「資料治理與資料政策」的適用範圍為執委會及其相關部門機構所擁有、利用或再利用的資料集,包括政策決定所使用的資料、行政資料與個人資料。在「資料治理與資料政策」的執行上,則導入「遵守或解釋」(comply-or-explain)原則,除非法律明示規定為選擇性適用,否則執委會轄下相關部門機構皆需遵守;倘未遵守,則需就無法遵守的原因提出解釋。以下分別就「資料治理」與「資料政策」兩大部分重點說明。 一、資料治理 主要目的在建構執委會統一的資料治理架構,釐清相關角色的責任與相互依賴關係。依角色與任務的不同,執委會將資料治理分為三層級,並由秘書總署集體治理團隊(Secretariat-General corporate governance team)支援三層級的執行工作。 (一)策略層級(strategic level) 由資訊管理指導委員會(Information Management Steering Board, IMSB),處理資料治理與資料政策相關議題,界定長期推動願景、提供政策方向、監督推動與執行之進程,並作出策略決定。 (二)管理階層(managerial level) 由資料議題相關的組織、委員會、團體所組成之資料協調小組(data coordination groups)、各地區資料聯絡窗口(local data correspondent)、執委會各相關部門機構下的資料治理委員會(data governance board),以及策略層級就各資料集所指定之資料擁有者(data owner),依策略層級所提出之願景與政策方向,在各處建立並執行資料政策、監督執行進度,並向策略層級報告執行進度及任何超出其決策權限之問題。 (三)運作階層(operational level) 由資料擁有者選出或指派資料管理員(data steward),並與資料利用者(data user)實際執行資料政策,必要時將相關議題提到管理層級解決。 二、資料政策 就資料管理(data management)、資料互通性與標準(data interoperability and standards)、資料品質(data quality)、資料保護與資訊安全(data protection and information security)等核心面向,建立上位原則。 其中關於「資料管理」部分,又依資料生命週期細分。例如在「資料集建立、蒐集或取得」方面採取一次性原則,故執委會轄下相關部門機構在建立、蒐集或取得資料之前,需探詢必要資料或資訊是否已存在,避免重複取得。主要需求資料集的部門機構,應協助讓其他執委會相關部門機構或歐盟機構也獲得使用該資料集之權利。又例如「資料集存取、使用與共享」方面,除非歐盟相關的執委會決定、指令或規則另有規定[3],否則以「需要共享」(need to share)或「預設共享」(share by default)為原則,並使用一致化的資料管理與視覺化工具或資料平台。 針對「資料互通性與標準」與「資料品質」兩部分,著重在執委會內部的共通一致性,包括資料格式、資料相關詞彙、資料品質的定義與量測等。而在「資料保護與資訊安全」方面,則強調「歐盟機關個人資料保護規則」[4]相關義務,以及歐盟資料保護監督機關(European Data Protection Supervisor, EDPS)所提相關指引之遵循。 參、簡析 觀察歐盟執委會的「資料治理與資料政策」,可知其資料治理架構與相關政策,是以形成一個資料共享再利用生態系為藍圖。除了強調資料一次性建立及資料預設共享等原則,更從組織管理角度,界定不同單位或角色的任務與責任,並凸顯資料治理管理組織的建構,對資料政策執行之重要性。 我國政府長期致力於數位國家之發展,在政府資料開放政策推動上已有不少成果,例如建立政府資料開放平台、訂定各級機關資料開放作業原則、統一資料開放格式等。為持續厚植數位國家的資料應用能量,建議未來可進一步完善政府資料治理構面,兼納「政府對民眾之資料開放」及「公務機關間之資料共享」等面向,借鏡歐盟執委會之作法,確立資料共享再利用之管理架構及原則,提升政府資料應用的效率與效能。 [1] EUROPEAN COMMISSION, Data Governance and Data Policies at the European Commission (2020), https://ec.europa.eu/info/sites/info/files/summary-data-governance-data-policies_en.pdf (last visited Oct. 5, 2020). [2] See Ursula von der Leyen, My Agenda for Europe: Political Guidelines for the Next European Commission 2019-2024 (2019), https://ec.europa.eu/commission/sites/beta-political/files/political-guidelines-next-commission_en.pdf (last visited Oct. 8, 2020). [3] 例如歐盟執委會決定Commission Decision 2011/833/EU、歐盟規則Regulation (EC) No 1049/2001及歐盟指令Directive (EU) 2019/1024等,有關近用歐盟資料之例外規定。 [4] Regulation on the Protection of Natural Persons with regard to the Processing of Personal Data by the Union Institutions, Bodies, Offices and Agencies and On the Free Movement of Such Data, and Repealing Regulation (EC) No 45/2001 and Decision No 1247/2002/EC, Council Regulation 2018/1725, 2018 O.J. (L295) 39.
美國醫療保健領域對新興資料儲存系統理論「資料湖泊」(Data Lake)的應用在現今資訊流通快速蓬勃發展的時代,巨量資料(Big Data)帶來效率與生產力等龐大效益已無庸置疑。相較於將資料以「資料倉儲」(Data Warehouse)模式儲存,「資料湖泊」(Data Lake)被廣泛視為巨量資料快速演進的下一步。 美國的醫療保健領域為因應巨量資料發展並提升醫療保健系統的透明度與有責性,美國醫療保險與補助中心(Centers for Medicare & Medicaid Services, CMS)於2013年底建立CMS虛擬研究資料中心(Virtual Research Data Center, VRDC),讓研究員能夠以安全有效率的方式取得並分析CMS的龐大醫療保健資料。此種資料倉儲模式會對進入的資料預先分類,並整合為特定形式以指導後續分析的方式。缺點在於為讓資料更易於分享,會進行「資料清理」(data cleaning)以檢測及刪除不正確資訊並將其轉換成機器可讀取格式,各資料版本會被強制整合為特別形式,但資料清理和轉換的過程會導致明顯的數據流失,對研究產生不利的限制。有鑑於此,為更有效益的應用巨量資料,Pentaho首席技術官James Dixon提出新的資料儲存理論—資料湖泊(Data Lake),此概念於2011年7月21日首先被討論於美國《富士比》雜誌中,目前在英美國家公部門和民間企業間已被熱烈討論。 與Data Warehouse最大不同在於Data Lake可包含「未被清理的資料」(unclean data),保持其最原始的形式。故使用者可取得最原始模式的資料,減少資源上處理數據的必要,讓來自全國各政府機關的資料來源更易於結合。Data Lake主要有四點特性:1.以低成本保存巨量資料(Size and low cost)2.維持資料高度真實性(Fidelity)3.資料易取得(Ease of accessibility)4.資料分析富彈性(Flexible)。儲存超過百萬筆病患資料的加州大學歐文分校醫療中心(UC Irvine Medical Center)即以Hadoop架構為技術建立了一個Data Lake,該中心能以最原始的形式儲存各種不同的紀錄數據直到日後需要被分析之時,可協助維持資料的來源與真實性,並得以不同形式的醫療數據進行分析項目,例如患者再住院可能性的預測分析。 但相對的Data Lake在安全性和檢視權限上也有一定的風險,尤其是醫療保健領域,因為這意味著病患的資料在個資生命週期裡隨時可被取得,因此資訊的取得應被嚴密控制以維持各層級的安全與保障,在建立安全的Data Lake之前,必須審慎考慮誰有資訊檢視權限以及透過什麼媒介取得Data Lake中的資料等問題。
日本內閣府召集研究小組 解決因AI帶來之智財問題日本內閣府組成「AI時代的智慧財產權研討小組」,由東京大學副校長渡邊敏也作為主席於今(2023)年10月4日召開首次會議,為討論生成式AI(人工智慧)發展帶來的智慧財產權問題。討論主題包括法規範現況、在人類參與有限的情況下由生成式AI所產出之發明是否可以申請專利等,目標於年底前彙整、蒐集企業經營者待解決議題。亦將從其他法律的角度進行討論,例如:AI模仿商品形態是否亦受到日本《不正競爭防止法》之拘束;AI與專利之間的關係,依據日本《專利法》,專利權目前僅授予個人參與創造過程的發明,隨著AI技術的發展,預計會出現難以做出決策的情況,將討論諸如取得專利所須的人類參與程度等問題;以及擁有大量資料的權利持有者向AI開發者提供有償資料的優缺點。與會專家表示,希冀看到從鼓勵利用AI進行新創作和發明之角度出發。日本文化廳和其他相關組織亦同步討論AI生成的作品,若與現有之受著作權保護的作品相似時是否會侵害著作權之議題。 日本內閣府早先於今年5月公布「AI相關論點之初步整理」(AIに関する暫定的な論点整理),我國行政院於今年8月31日正式揭示國科會擬定之「行政院及所屬機關(構)使用生成式AI參考指引」草案,我國經濟部智慧局亦規劃研擬就AI生成物是否享有著作權或專利權、訓練資料合理使用範圍、企業強化營業秘密保護等3大面向建立AI指引,國內外AI相關指引議題均值得持續追蹤瞭解。另,企業無論是擔憂AI技術成果外洩、不慎侵害他人智財權或智財成果被生成式AI侵害之虞等,因應數位化趨勢與數位證據保全而應強化相關管理措施,資策會科法所發布之《營業秘密保護管理規範》、《重要數位資料治理暨管理制度規範(EDGS)》協助企業檢視自身管理措施之符合性並促進有效的落實管理。 本文同步刊登於TIPS網(https://www.tips.org.tw)