位於舊金山的RPX公司為一積極買進大量專利為目的所成立的新創公司。該公司宣稱自己為“防禦型專利的聚集者”,計畫買進有用專利,以協助保護科技公司遭受專利流氓提出專利訴訟,進而必須付出昂貴專利權利金或授權金。
RPX公司由Kleiner Perkins Caufield & Byers 及Charles Rivers Ventures兩家創投公司共同籌措資金而成立,其執行長為John Amster及Geoffrey Barker,兩位先前皆為另一專門購買專利之企業 Intellectual Ventures的副總裁。
RPX將採會員制方式,依公司營業收入的情況,每年收取固定3萬5千美元到 4百9拾萬美元的費用。會員將可依公司營運需求取得RPX之專利授權。2008年11月The Wall Street Journal 2 刊登出Cisco Systems與IBM已成為RPX的會員成員之一。
RPX公司稱已獲得150件美國專利,並另已提交申請60件美國專利,總價值共4仟萬美元,其領域包括網際網路搜尋(Internet search),無線射頻身分識別(radio frequency identification),以及行動技術(mobile technology)。
註1:Patent trolls(專利流氓) 為握有專利但不運用於公司之製造或銷售產品,而是透過專利授權而取得權利金或若不接受專利授權者,藉由提出專利訴訟而取得損害賠償金之公司。
註2:The Wall Street Journal為提供財政、商業及經濟等相關消息之報紙全文。
歐盟執委會於2020年2月公布《人工智慧白皮書》(AI White Paper)後,持續蒐集各方意見並提出新的人工智慧規範與行動。2021年4月針對人工智慧法律框架提出規範草案(Proposal for a Regulation on a European approach for Artificial Intelligence),透過規範確保人民與企業運用人工智慧時之安全及基本權利,藉以強化歐盟對人工智慧之應用、投資與創新。 新的人工智慧法律框架未來預計將統一適用於歐盟各成員國,而基於風險規範方法將人工智慧系統主要分為「不可接受之風險」、「高風險」、「有限風險」及「最小風險」四個等級。「不可接受之風險」因為對人類安全、生活及基本權利構成明顯威脅,故將被禁止使用,例如:政府進行大規模的公民評分系統;「高風險」則是透過正面例舉方式提出,包括:可能使公民生命或健康處於危險之中的關鍵基礎設施、教育或職業培訓、產品安全、勞工與就業、基本之私人或公共服務、可能會干擾基本權之司法應用、移民與庇護等面向,而高風險之人工智慧在進入市場之前須要先行遵守嚴格之義務,並進行適當風險評估及緩解措施等。「有限風險」則是指部分人工智慧應有透明度之義務,例如當用戶在與該人工智慧系統交流時,需要告知並使用戶意識到其正與人工智慧系統交流。最後則是「最小風險」,大部分人工智慧應屬此類型,因對公民造成很小或零風險,各草案並未規範此類人工智慧。 未來在人工智慧之治理方面,歐盟執委會建議各國現有管理市場之主管機關督導新規範之執行,且將成立歐洲人工智慧委員會(European Artificial Intelligence Board),推動人工智慧相關規範、標準及準則之發展,也將提出法規沙盒以促進可信賴及負責任之人工智慧。
歐盟推出《網路韌性法案》補充歐盟網路安全框架歐盟為提升網路數位化產品之安全性,解決現有網路安全監管框架差距,歐盟執委會於2022年9月提出《網路韌性法案》(EU Cyber Resilience Act)草案,對網路供應鏈提供強制性網路安全標準,並課予數位化產品製造商在網絡安全方面之義務。該法案亦提出以下四個具體目標: 1.確保製造商對於提升產品之網路安全涵蓋整個生產週期; 2.為歐盟網路安全之合法性創建單一且明確之監管架構; 3.提高網路安全實踐之透明度,以及製造商與其產品之屬性; 4.為消費者和企業提供隨時可用之安全產品。 《網路韌性法案》要求製造商設計、開發和生產各種硬體、有形及軟體、無形之數位化產品時,須滿足法規要求之網路安全標準,始得於市場上銷售,並應提供清晰易懂之使用說明予消費者,使其充分知悉網路安全相關資訊,且至少應於五年內提供安全維護與軟體更新。 《網路韌性法案》將所涵蓋之數位化產品分為三種類別(產品示例可參考法案附件三):I類別、II類別,以及預設類別。I類別產品之網路安全風險級別低於II類別產品、高於預設類別,須遵守法規要求之安全標準或經由第三方評估;II類別為與網路安全漏洞具密切關連之高風險產品,須完成第三方合格評估始符合網路安全標準;預設類別則為無嚴重網路安全漏洞之產品,公司得透過自我評估進行之。法案另豁免已受其他法律明文規範之數位化產品,惟並未豁免歐洲數位身份錢包、電子健康記錄系統或具有高風險人工智慧系統產品。 若製造商未能遵守《網路韌性法案》之基本要求和義務,將面臨高達1500萬歐元或前一年度全球總營業額2.5%之行政罰鍰。各歐盟成員國亦得自行制定有效且合於比例之處罰規則。
多層次營銷公司即使向數千名人員發布屬於其營業秘密之培訓教材,仍能主張已採取合理保密措施2022年3月7日華盛頓西區地方法院針對原告多層次營銷(直銷)美容公司Tori Belle Cosmetics LLC(下稱原告)向數千名人員發布屬於營業秘密之培訓教材,能主張有採取合理保密措施做出結論。原告行銷Belle Cosmetics產品之方式是以銷售人員的個人 Facebook 帳號來販售化妝品和假睫毛產品,並將公司培訓教材上傳到由數千名成員組成的 Facebook 群組“Team Lash Out”中,且設定帳號公開權限維護其所提供之培訓教材、銷售人員及客戶之聯繫清單,故華盛頓西區地方法院仍認定其主張有理由。 被告(Belle Cosmetics的五名前網路銷售人員)雖主張銷售人員因持有Facebook個人帳號之所有權,認為與個人帳號有關之銷售人員及客戶的聯繫清單皆屬被告所有。並且,由於每個被告的 Facebook 朋友都可以看到他們的朋友清單,而主張聯繫清單不具秘密性。法院不採納被告之主張,認為原告已有設定權限限制Facebook 群組中的朋友僅可以看到其他朋友的姓名和頭像,涉及電話及地址等聯繫資訊則設定不公開,故銷售人員及客戶之聯繫清單仍具秘密性。 此外,被告亦主張原告將培訓教材上傳至「世界最大社交媒體網站Facebook」,並向數千名銷售人員公開,應判定該培訓教材已不具秘密性。法院則駁回指出Facebook之用戶可以設定權限,指定特定人加入群組中讀取培訓教材,故認為仍培訓教材具有秘密性。 本案最值得關注的是後續法院會以何種方式評估上傳至Facebook群組之培訓教材有採取合理保密措施,例如法院如何評估原告與銷售人員間的合約有約定針對教材內容具有保密義務、群組管理員如何驗證請求加入群組之用戶是該公司之網路銷售人員,或法院如何判定在營業秘密解密前Facebook 群組中有多少用戶不具備網絡銷售人員身分。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
合成資料(synthetic data)「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。 在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。 英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。 技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。