Youtub宣佈開始測試影片下載服務,未來將朝向提供使用者免費或付費下載Youtube網站上之影片。同時免費提供下載的影片,創作者可選擇五種創用CC(Creative Commons)的授權模式;另一方面,影片所有人可自訂下載影片所應支付的費用,使用者則透過Google 體系的Google Checkout 付費。Youtube在其發表的聲明中指出,因為許多影片創作者希望影片能夠更廣為流傳,因此推出影片下載服務,影片所有人可以選擇影片的創用CC授權模式,使影片下載者在授權範圍內利用所下載的影片內容,促進影片內容的流通。
目前供下載的影片格式為MP4,屬於可普遍流傳播放的格式,可下載的影片在左下角有download連結。在實際應用上,Youtube目前正與Stanford、Duke、UC Berkeley、UCLA等大學透過該站測試免費下載學校報告、研究、演講,使學生或教授在課堂上可以離線使用與教學相關的影片。另外YouTube在My Video工具列中開發”My Purchases”頁面,讓使用者能追蹤他們所下載或想下載的影片。
法國國家資訊自由委員會(Commission nationale de l’informatique et des libertés, CNIL)自2020年5月起陸續收到民眾對臉部辨識軟體公司Clearview AI的投訴,並展開調查。嗣後,CNIL於2021年12月16公布調查結果,認為Clearview AI公司蒐集及使用生物特徵識別資料(biometric data)的行為,違反《一般資料保護規範》(General Data Protection Regulation,GDPR)的規定,分別為: 非法處理個人資料:個人資料的處理必須符合GDPR第6條所列舉之任一法律依據,始得合法。Clearview AI公司從社群網路蒐集大量全球公民的照片與影音資料,並用於臉部辨識軟體的開發,其過程皆未取得當事人之同意,故缺乏個人資料處理的合法性依據。 欠缺保障個資主體的權利:Clearview AI公司未考慮到GDPR第12條、第15條及第17條個資主體權利之行使,特別是資料查閱權,並且忽視當事人的個資刪除請求。 因此,CNIL要求Clearview AI公司必須於兩個月內改善上述違法狀態,包括:(1)在沒有法律依據的情況下,停止蒐集及使用法國人民的個資;(2)促進個資主體行使其權利,並落實個資刪除之請求。若Clearview AI公司未能於此期限內向CNIL提交法令遵循之證明,則CNIL可依據GDPR進行裁罰,可處以最高 2000萬歐元的罰鍰,或公司全球年收入的4%。
美國聯邦最高法院禁止警察在未取得令狀前搜索手機內容2014年6月25日,美國聯邦最高法院就Riley v. California一案作出判決,否定了附帶搜索(註)亦適用於行動電話的見解,並要求警察在查看嫌犯手機的內容前必須取得搜索票。 法院見解認為,由於手機裡的資料顯然不會造成執法者人身安全的危險,而在警察取得搜索票的這段期間內,資料也不可能遺失(甚至可以透過切斷手機連線功能,防免資料因遠端移除或加密而遺失),因此手機內容應不在附帶搜索的適用範圍內。判決中另指出,智慧型手機已經成為人們日常生活中無時無刻、無所不在的一部分,其中含有大量的個人資訊,包括通聯紀錄、標記有日期及地點的照片與影片、網路搜尋及瀏覽紀錄、購物清單及GPS定位等,若允許警察在未取得搜索票的情況下查看嫌犯手機,將有可能嚴重侵犯到個人隱私。 首席大法官John Roberts表示:「如果更進一步地細究系爭隱私利益之範圍,用戶在現代手機上所看到的資料,事實上並不儲存在裝置本身。將手機看作一個容器並對其內容實施附帶搜索,這樣的預設是有點勉強的,尤其當手機被用來讀取儲存在他處的資料時,這種說法更是完全無法成立。」 在其協同意見書中,大法官Samuel Alito也認為,相對於非電子資訊,法院為電子資訊提供了更多的隱私保護。同樣是通聯記錄,如果是從嫌犯口袋裡扣押的紙本帳單取得,在法律上毋須取得令狀即得搜索,但如果是儲存在手機裡就不是這麼一回事了。 註:為保護執法者人身安全並防免被告湮滅證據,我國刑事訴訟法第130條規定,檢察官、檢察事務官、司法警察官或司法警察逮捕嫌犯或執行拘提、羈押時,雖無搜索票,得逕行搜索其身體、隨身攜帶之物件、所使用之交通工具及其立即可觸及之處所,學說上稱作「附帶搜索」,為令狀搜索原則之例外。
日本自動駕駛損害賠償責任研究會報告為釐清自駕車事故發生時,該如何適用日本《汽車賠償法》相關規定,國土交通省於2016年11月設置「自動駕駛損害賠償責任研究會」,檢討︰(1)自動駕駛是否適用《汽車賠償法》上運用供用者概念?(2)汽車製造商在自動駕駛事故損害中應負何種責任?(3)因資料謬誤、通訊不良、被駭等原因導致事故發生時應如何處理?(4)利用自動駕駛系統時發生之自損事故,是否屬於《汽車賠償法》保護範圍等議題,並於2018年3月公布研究報告。針對上述各點,研究會認為目前仍宜維持現行法上「運行供用者」責任,由具有支配行駛地位及行駛利益者負損害賠償責任,故自駕車製造商或因系統被駭導致失去以及支配行駛之地位及行駛利益者,不負運行供用者責任。此外,研究報告亦指出,從《汽車賠償法》立法意旨在於保護和汽車行駛無關之被害者,以及迅速使被害者得到救濟觀之,自動駕駛系統下之自損事故,應仍為《汽車賠償法》保護範圍所及。
新加坡科技與研究局針對未來工廠提出研究規劃及方向新加坡科技與研究局(Agency for Science, Technology and Research)於2017年7月26日提出未來工廠(Toward the factories of the future)概念及相關研究方向,自動化(Automation)、機器人(robotics)、先進電腦輔助設計(advanced computer-aided design)、感測和診斷技術(sensing and diagnostic technologies)將徹底改變現代工廠,可製造的產品範圍廣泛,從微型車乃至於飛機皆可生產。積層製造(Additive Manufacturing),又稱3D列印(3D printing),可使用單一的高科技生產線來創造許多不同的產品項目,而不需要傳統大規模生產的設計限制和成本,伴隨未來高效能電腦和感測技術之進步,積層製造速度也會隨之加快。而智慧工廠(smart factories)將與物聯網(IOT)、雲端計算(cloud computing)、先進機器人(advanced robotics)、即時分析(real-time analytics)與機器學習(machine learning)等技術與積層製造技術結合,將大為提升生產速度及產量。 為加速及改善積層製造的製程,最重要的方法之一,是使用材料物理學的基本原理來模擬製造過程,而近期更引進跨學科之研究,「模擬」最終產品化學成分和機械性能的微觀結構。因積層製造是一個複雜又困難的過程,透過變化既有規則之模擬(Game-Changing simulations),若建立完成模型且模擬成功,將成為積層製造的殺手級技術。在未來的五到十年,我們將看到更多的零件從積層製造技術生產出來,而且這種技術有機會成為未來工廠的生產基礎。由於現行材料及製造流程與機器必須配合一致,些許的差異皆會生產出不同品質之產品,故未來積層製造工廠的結果穩定重現性(repeatability)和標準化(standardization),將是產品商業化的主要障礙與挑戰。